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In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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We will present the proof of existence of renormalized solutions to a nonlinear
parabolic problem ∂tu − diva(·, Du) = f with right-hand side f and initial data
u0 in L1. The growth and coercivity conditions on the monotone vector field a are
prescribed by a generalized N -function M which is anisotropic and inhomogeneous
with respect to the space variable. In particular,M does not have to satisfy an upper
growth bound described by a ∆2-condition. Therefore we work with generalized
Musielak–Orlicz spaces which are not necessarily reflexive. Moreover we provide a
weak sequential stability result for a more general problem: ∂tβ(·, u)−div(a(·, Du)+
F (u)) = f , where β is a monotone function with respect to the second variable and F
is locally Lipschitz continuous. Within the proof we use truncation methods, Young
measure techniques, the integration by parts formula and monotonicity arguments
which have been adapted to nonreflexive Musielak–Orlicz spaces.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Statement of the problem

Let Ω be a bounded domain in Rd (d ≥ 1) with Lipschitz boundary ∂Ω if d ≥ 2 and let [0, T ] be a finite
time interval, and QT = (0, T )×Ω . We are interested in existence of renormalized solutions to the following
nonlinear parabolic problem

∂tβ(x, u(t, x))− div(a(x,Du(t, x)) + F (u(t, x))) = f in QT ,

u = 0 on (0, T )× ∂Ω ,
β(x, u(0, x)) = b0 in Ω ,

(P, f, b0)
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where f ∈ L1(QT ), F : R→ Rd is locally Lipschitz continuous and

B1: β : Ω × R → R is a monotone (with respect to the second argument), single-valued Carathéodory
function.

B2: β(x, 0) = 0 for a.a. x ∈ Ω .
B3: for all l ∈ R β(·, l) ∈ L1(Ω).

Moreover, we assume that a : Ω × Rd → Rd satisfies the following conditions:

A1: a : Ω × Rd → Rd is a Carathéodory function.
A2: there exist generalized N -functions M,M∗ : Ω ×Rd → Rd, where M∗ is a conjugate function to M (for

definitions see Section 2), a constant ca ∈ (0, 1] and a nonnegative integrable function a0 such that

a(x, ξ) · ξ ≥ ca {M∗(x, a(x, ξ)) +M(x, ξ)} − a0(x) (1)

for a.a. x ∈ Ω and all ξ ∈ Rd.
A3: a(·, ·) is monotone, i.e.

(a(x, ξ)− a(x, η)) · (ξ − η) ≥ 0 (2)

for a.a. x ∈ Ω and all ξ, η ∈ Rd.

Additionally, we assume that

M1: there exist cM > 0, ν > 0 and ξ0 ∈ Rd such that

M(x, ξ) ≥ cM |ξ|1+ν for a.a. x ∈ Ω and all ξ ∈ Rd, |ξ| ≥ |ξ0|. (3)

M2: the conjugate function

M∗ satisfies the ∆2-condition, (4)

i.e., there exist some nonnegative, integrable on Ω function gM∗ and a constant CM∗ > 0 such that

M∗(x, 2ξ) ≤ CM∗M∗(x, ξ) + gM∗(x) for all ξ ∈ Rd and a.a. x ∈ Ω . (5)

M3: the conjugate function M∗ satisfies

lim
|ξ|→∞

ess inf
x∈Ω

M∗(x, ξ)
|ξ|

=∞. (6)

Example 1.1. The following examples of N -functions fit into our setting:

• M(x, ξ) = |ξ|p(x), with p : Ω → (p−,∞) measurable and p− := ess infx∈Ω p(x) > 1.
• M(x, ξ) =

d
i=1 |ξi|pi(x), pi : Ω → (p−i ,∞) measurable, p−i := ess infx∈Ω pi(x) > 1, i = 1, . . . , d and

ξ = (ξ1, . . . , ξd) ∈ Rd.
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