Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces

P. Gwiazda^a, P. Wittbold^b, A. Wróblewska-Kamińska^{c,*}, A. Zimmermann^b

^a Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland

^b Faculty of Mathematics, University Duisburg-Essen, Germany ^c Institute of Mathematics, Bolish Academy of Sciences vil Áriedeshieh 8, 00,65

^c Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warszawa, Poland

A R T I C L E I N F O

Article history: Received 12 March 2015 Accepted 24 August 2015 Communicated by S. Carl

Keywords: Parabolic equations Renormalized solutions Integration by parts Generalized Musielak–Orlicz spaces Monotonicity arguments Biting lemma Young measures

ABSTRACT

We will present the proof of existence of renormalized solutions to a nonlinear parabolic problem $\partial_t u - \operatorname{diva}(\cdot, Du) = f$ with right-hand side f and initial data u_0 in L^1 . The growth and coercivity conditions on the monotone vector field a are prescribed by a generalized \mathcal{N} -function M which is anisotropic and inhomogeneous with respect to the space variable. In particular, M does not have to satisfy an upper growth bound described by a Δ_2 -condition. Therefore we work with generalized Musielak–Orlicz spaces which are not necessarily reflexive. Moreover we provide a weak sequential stability result for a more general problem: $\partial_t \beta(\cdot, u) - \operatorname{div}(a(\cdot, Du) + F(u)) = f$, where β is a monotone function with respect to the second variable and F is locally Lipschitz continuous. Within the proof we use truncation methods, Young measure techniques, the integration by parts formula and monotonicity arguments which have been adapted to nonreflexive Musielak–Orlicz spaces.

 \odot 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Statement of the problem

Let Ω be a bounded domain in \mathbb{R}^d $(d \ge 1)$ with Lipschitz boundary $\partial \Omega$ if $d \ge 2$ and let [0, T] be a finite time interval, and $Q_T = (0, T) \times \Omega$. We are interested in existence of renormalized solutions to the following nonlinear parabolic problem

$$\partial_t \beta(x, u(t, x)) - \operatorname{div}(a(x, Du(t, x)) + F(u(t, x))) = f \quad \text{in } Q_T,$$

$$u = 0 \quad \text{on } (0, T) \times \partial \Omega,$$

$$\beta(x, u(0, x)) = b_0 \quad \text{in } \Omega,$$

$$(P, f, b_0)$$

* Corresponding author.

E-mail addresses: pgwiazda@mimuw.edu.pl (P. Gwiazda), petra.wittbold@uni-due.de (P. Wittbold), a.wroblewska@impan.pl (A. Wróblewska-Kamińska), zimmermann.aleksandra@uni-due.de (A. Zimmermann).

 $\label{eq:http://dx.doi.org/10.1016/j.na.2015.08.017} 0362-546 X/ © 2015 Elsevier Ltd. All rights reserved.$

where $f \in L^1(Q_T), F : \mathbb{R} \to \mathbb{R}^d$ is locally Lipschitz continuous and

- **B1**: $\beta : \Omega \times \mathbb{R} \to \mathbb{R}$ is a monotone (with respect to the second argument), single-valued Carathéodory function.
- **B2**: $\beta(x, 0) = 0$ for a.a. $x \in \Omega$. **B3**: for all $l \in \mathbb{R}$ $\beta(\cdot, l) \in L^1(\Omega)$.
- **DO**. for all $t \in \mathbb{R} \mid \mathcal{G}(\cdot, t) \in \mathbb{H}$ (12).

Moreover, we assume that $a: \Omega \times \mathbb{R}^d \to \mathbb{R}^d$ satisfies the following conditions:

- A1: $a: \Omega \times \mathbb{R}^d \to \mathbb{R}^d$ is a Carathéodory function.
- **A2**: there exist generalized \mathcal{N} -functions $M, M^* : \Omega \times \mathbb{R}^d \to \mathbb{R}^d$, where M^* is a conjugate function to M (for definitions see Section 2), a constant $c_a \in (0, 1]$ and a nonnegative integrable function a_0 such that

$$a(x,\xi) \cdot \xi \ge c_a \left\{ M^*(x, a(x,\xi)) + M(x,\xi) \right\} - a_0(x) \tag{1}$$

for a.a. $x \in \Omega$ and all $\xi \in \mathbb{R}^d$. A3: $a(\cdot, \cdot)$ is monotone, i.e.

$$(a(x,\xi) - a(x,\eta)) \cdot (\xi - \eta) \ge 0 \tag{2}$$

for a.a. $x \in \Omega$ and all $\xi, \eta \in \mathbb{R}^d$.

Additionally, we assume that

M1: there exist $c_M > 0, \nu > 0$ and $\xi_0 \in \mathbb{R}^d$ such that

$$M(x,\xi) \ge c_M |\xi|^{1+\nu} \quad \text{for a.a. } x \in \Omega \text{ and all } \xi \in \mathbb{R}^d, \, |\xi| \ge |\xi_0|. \tag{3}$$

M2: the conjugate function

$$M^*$$
 satisfies the Δ_2 -condition, (4)

i.e., there exist some nonnegative, integrable on Ω function g_{M^*} and a constant $C_{M^*} > 0$ such that

$$M^*(x, 2\xi) \le C_{M^*}M^*(x, \xi) + g_{M^*}(x) \quad \text{for all } \xi \in \mathbb{R}^d \text{ and a.a. } x \in \Omega.$$
(5)

M3: the conjugate function M^* satisfies

$$\lim_{|\xi| \to \infty} \operatorname{ess\,inf}_{x \in \Omega} \frac{M^*(x,\xi)}{|\xi|} = \infty.$$
(6)

Example 1.1. The following examples of \mathcal{N} -functions fit into our setting:

- $M(x,\xi) = |\xi|^{p(x)}$, with $p: \Omega \to (p^-,\infty)$ measurable and $p^- := \operatorname{ess\,inf}_{x \in \Omega} p(x) > 1$.
- $M(x,\xi) = \sum_{i=1}^{d} |\xi_i|^{p_i(x)}, p_i : \Omega \to (p_i^-, \infty)$ measurable, $p_i^- := \operatorname{ess\,inf}_{x \in \Omega} p_i(x) > 1, i = 1, \dots, d$ and $\xi = (\xi_1, \dots, \xi_d) \in \mathbb{R}^d$.

Download English Version:

https://daneshyari.com/en/article/839413

Download Persian Version:

https://daneshyari.com/article/839413

Daneshyari.com