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We will present the proof of existence of renormalized solutions to a nonlinear
parabolic problem d;u — diva(-, Du) = f with right-hand side f and initial data
up in L'. The growth and coercivity conditions on the monotone vector field a are
prescribed by a generalized N -function M which is anisotropic and inhomogeneous
with respect to the space variable. In particular, M does not have to satisfy an upper
growth bound described by a As-condition. Therefore we work with generalized
Musielak—Orlicz spaces which are not necessarily reflexive. Moreover we provide a
weak sequential stability result for a more general problem: 8;3(-, w) —div(a(:, Du)+
F(u)) = f, where 3 is a monotone function with respect to the second variable and F’
is locally Lipschitz continuous. Within the proof we use truncation methods, Young
measure techniques, the integration by parts formula and monotonicity arguments
which have been adapted to nonreflexive Musielak—Orlicz spaces.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Statement of the problem

Let £ be a bounded domain in R? (d > 1) with Lipschitz boundary 042 if d > 2 and let [0, 7] be a finite
time interval, and Qr = (0,T") x 2. We are interested in existence of renormalized solutions to the following

nonlinear parabolic problem

WPz, u(t,z)) — div(a(z, Du(t,z)) + F(u(t,z))) = f in Qr,

u=0 on (0,T) x 082,
B(z,u(0,2)) =by in £2,

(Pvab())
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where f € L' (Qr), F : R — R? is locally Lipschitz continuous and

B1l: 8 : 2 xR — R is a monotone (with respect to the second argument), single-valued Carathéodory
function.

B2: 3(z,0) =0 for a.a. € (2.

B3: for all I € R §(-,1) € L*(£2).

Moreover, we assume that a : 2 x R? — R satisfies the following conditions:

Al: a: 2 x R? - R? is a Carathéodory function.

A2: there exist generalized N-functions M, M* : 2 x R? — RY where M* is a conjugate function to M (for
definitions see Section 2), a constant ¢, € (0,1] and a nonnegative integrable function ag such that

a(x,€) - & = ca {M"(x,a(x,8)) + M(z,§)} — ao(x) (1)

for a.a. x € £ and all £ € R?.
A3: a(-,-) is monotone, i.e.

(a(z,§) —a(z,n) - (§—n) 20 (2)
for a.a. z € 2 and all £, n € R%.
Additionally, we assume that
M1: there exist cp; > 0,7 > 0 and & € R? such that
M(z,€) > epr|€'TY for a.a. 2 € 2 and all € € RY, |¢] > |&]. (3)
M2: the conjugate function
M* satisfies the Ag-condition, (4)
i.e., there exist some nonnegative, integrable on {2 function gps+ and a constant Cps+« > 0 such that
M*(2,26) < Crp= M*(2,€) + gar- () for all € € R? and a.a. x € 2. (5)
M3: the conjugate function M* satisfies

M*
lim ess inf M, &) = 0. (6)
lgl—oo  weQ ¢

Example 1.1. The following examples of N-functions fit into our setting:

o M(x,&) = |¢P™) with p: 2 — (p~,00) measurable and p~ := essinf,c o p(z) > 1.
o M(x,&) = Zle &P @) p; © 2 — (p;,00) measurable, p; = essinfieopi(z) > 1,i = 1,...,d and
§: (617'-'7£d) € Rd'
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