Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Second order estimates for boundary blow-up solutions of elliptic equations with an additive gradient term

Ester Giarrusso^{a,*}, Giovanni Porru^b

 ^a Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", University of Naples Federico II, MSA, Naples, Italy
 ^b Dipartimento di Matematica e Informatica, University of Cagliari, Cagliari, Italy

ARTICLE INFO

Article history: Received 3 June 2015 Accepted 8 September 2015 Communicated by Enzo Mitidieri

MSC: 35J25 35J62 35J67 35B40 35B44 Keywords:

Blow-up solutions Quasilinear elliptic equations with additive gradient term Second order effect

1. Introduction

We study the boundary blowup problem

$$\Delta u - \ell |Du|^{\frac{2p}{p+1}} = u^p \quad \text{in } \Omega, \ u \to \infty \text{ as } x \to \partial\Omega, \tag{1}$$

where Ω is a bounded smooth domain in \mathbb{R}^N , $N \ge 2$, $0 \le \ell \le 1$ and p > 1. We are interested in the behavior of the solution u near the boundary $\partial \Omega$. These solutions are called "blowup" or "large" solutions.

It is well known that the first order approximation of a large solution to the equation $\Delta u = u^p$, p > 1, depends only on the function $\delta(x) = \text{dist}(x, \partial \Omega)$ (it does not depend on the geometry of the domain Ω). In

* Corresponding author.

http://dx.doi.org/10.1016/j.na.2015.09.008

ABSTRACT

Let $\Omega \subset \mathbb{R}^N$ be a bounded smooth domain and let $0 \leq \ell \leq 1, p > 1$. We investigate the effect of the mean curvature of the boundary $\partial \Omega$ on the behavior of the solution to the problem $\Delta u - \ell |Du|^{\frac{2p}{p+1}} = u^p$ in $\Omega, u = \infty$ on $\partial \Omega$. We find an asymptotic expansion up to the second order of the solution u in terms of the distance from xto the boundary $\partial \Omega$.

 \odot 2015 Elsevier Ltd. All rights reserved.

E-mail addresses: ester.giarrusso@unina.it (E. Giarrusso), porru@unica.it (G. Porru).

 $^{0362\}text{-}546\mathrm{X}/\odot$ 2015 Elsevier Ltd. All rights reserved.

fact it turns out that, near the boundary, [6,17]

$$u(x) = \left(\frac{p-1}{\sqrt{2(p+1)}}\delta(x)\right)^{\frac{2}{1-p}} (1+o(1)),$$
(2)

where $o(1) \to 0$ as $\delta(x) \to 0$.

Lately, for p > 3 this result was improved by Lazer and McKenna [16], who proved that

$$u(x) = \left(\frac{p-1}{\sqrt{2(p+1)}}\delta(x)\right)^{\frac{2}{1-p}} + o(1).$$

A further deeper analysis on the behavior of u(x), carried out in [10] for p < 3 and in [2,3,7,8] for p > 1, shows that the second order effect in the expansion of u(x) near the boundary depends on the mean curvature $H(\bar{x})$ of $\partial \Omega$ at the nearest point \bar{x} to x. Namely, it results:

$$u(x) = \left(\frac{p-1}{\sqrt{2(p+1)}}\delta(x)\right)^{\frac{2}{1-p}} \left[1 + \frac{(N-1)H(\overline{x})}{p+3}\delta(x) + o(\delta)\right]$$

as $x \to \partial \Omega$.

The previous results were extended also to more general non linearities of the right hand side and more general nonlinear elliptic operators (see, for example [1,5,8,9,12,15,18-20,22,23] and the survey paper [21]).

As for the equation $\Delta u = u^p |Du|^q$ with $0 \le q < (p+3)/(p+2)$, in [13] it was proved the following expansion:

$$u(x) = \varphi(\delta(x)) \left[1 + \frac{(2-q)(N-1)H(\overline{x})}{2(p+3-q(p+2))} \delta(x) + o(\delta) \right],$$

where

$$\varphi(t) = \left(\frac{2-q}{p+q-1}\right)^{\frac{2-q}{p+q-1}} \left(\frac{p+1}{2-q}\right)^{\frac{1}{p+q-1}} t^{\frac{q-2}{p+q-1}}.$$

The problem

$$\Delta u - |Du|^q = f(u) \text{ in } \Omega, \ u(x) \to \infty \text{ as } x \to \partial \Omega,$$

where f(u) is increasing, unbounded and smooth, was studied in [4]. The authors showed how the main asymptotic behavior of u is strongly influenced by the additive term $-|Du|^q$. For instance, when $f(u) = u^p$, (2) is still valid if p > 1 and $q < \frac{2p}{p+1}$; on the contrary, if $\max\left\{1, \frac{2p}{p+1}\right\} < q < 2$ and p > 0 then near the boundary

$$u(x) = \frac{1}{2-q} \left[(q-1)\delta(x) \right]^{\frac{q-2}{q-1}} (1+o(1)).$$

For the special case (1) we derive from the results in [11] that

$$u(x) = L(\delta(x))^{\frac{2}{1-p}} (1+o(1))$$

where L is the solution of the equation

$$\ell\left(\frac{2}{p-1}\right)^{\frac{2p}{p+1}}L^{\frac{p-1}{p+1}} + L^{p-1} = \frac{2(p+1)}{(p-1)^2}.$$
(3)

Actually, in [11] $\ell = 1$, but slightly modifying the proof therein one can take $\ell \in (0, 1)$. In some sense, we see from calculations that, when q = 2p/(p+1) and p > 1, the term $|Du|^{\frac{2p}{p+1}}$ is "equivalent" to the term u^p .

Download English Version:

https://daneshyari.com/en/article/839419

Download Persian Version:

https://daneshyari.com/article/839419

Daneshyari.com