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a b s t r a c t

Near-ground geophysical soil sensors provide valuable information for precision agriculture applications.
Indeed, their readings can be used as proxy for many soil parameters. On-the-go soil sensor surveys are,
typically, carried out intensively (e.g., every 2 m) over many parallel transects. Two types of soil sensors
measurements are considered in this paper: apparent electrical conductivity (4 fields in California, USA)
and reflectance (1 field in Italy). Two types of spatial interpolations are carried out, universal kriging
(model-based) and inverse distance weighting (deterministic). Interpolation quality assessment is usu-
ally carried out using leave-one-out (loo) resampling. We show that loo resampling on transect sampling
datasets returns overly-optimistic, low interpolation errors, because the left-out data point has values
very close to that of its neighbors in the training dataset. This bias in the map quality assessment can
be reduced by removing the closest neighbors of the validation observation from the training dataset,
in a (spatial) h-block (SHB) fashion. The results indicate that, for soil sensor data acquired along parallel
transects: (i) the SHB resampling is a useful tool to test the performance of interpolation techniques and
(ii) the optimal (i.e., rendering the same errors of un-sampled locations between transects) SHB threshold
distance (h.dist) for neighbor-exclusion is proportional to the semi-variogram range and partial sill. This
procedure provides research scientists with an improved means of understanding the error of soil maps
made by interpolating soil sensor measurements.

Published by Elsevier B.V.

1. Introduction

The benefits of using on-the-go sensors as proxies for soil prop-
erties is well recognized (Adamchuk et al., 2004). The increased
coverage provided by geospatial sensor measurements enables
the spatial structure of the target soil property to be characterized
more accurately than when a limited set of soil samples are used

(Corwin and Lesch, 2005a). In order to obtain information across
the entire field, spatial interpolation techniques (e.g., kriging,
inverse distance weighing) are employed. Once the map is made,
it is essential to properly quantify its prediction uncertainty.
Indeed, interpolation error is often the greatest contribution to
the overall prediction error in a soil map (Nelson et al., 2011).

To assess the quality of the spatial interpolations, leave-one-out
(loo) resampling techniques are usually employed (Robinson and
Metternicht, 2006). The loo resampling is particularly effective
when removing a single observation allows estimating the interpo-
lation error over the farthest-away-as-possible (in terms of dis-
tance and/or value) location from the observed data (i.e., where
the highest prediction uncertainties are expected). Unfortunately
this does not always apply to soil sensor data. On-the-go soil sen-
sors are, generally, used to acquire data intensively (e.g., every
2 m), along many parallel transects. Unless the transect spacing
is narrow enough for the sampling scheme to be considered a dis-
perse grid, transect sampling is clustered (i.e., large difference
between average nearest neighbor and transect spacing). In clus-
tered sampling, neighboring measurements tend to be very similar.
Therefore, removing a single location may not provide comprehen-
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sive information on the error at un-sampled locations. Unrealisti-
cally low error estimates may, then, be expected (Ruß and
Brenning, 2010; Brenning, 2012).

To overcome this issue in the interpolation quality assessment,
nearly identical neighbors of the validation observation can be
removed from the training dataset. This particular case of loo is
called h-block (HB) resampling (Burman et al., 1994; Telford and
Birks, 2009). Spatial HB (SHB) resampling is generally used to
remove the spatial bias in the evaluation of the performance of
different spatial regression models. The SHB is generally
employed in large-scale (e.g., hundreds of km) applications, to
select/validate spatial models, mostly, in ecology studies. Here,
we propose a version of the SHB resampling for spatial interpola-
tion quality assessment at the field-scale (e.g., hundreds of m).
The proposed application specifically targets the interpolation of
intense transect surveys carried out with on-the-go proximal soil
sensors.

2. Materials and methods

2.1. Sensor data

On-the-go soil sensing was carried out by electromagnetic
induction (EMI) over four fields in California, USA and with an
active radiometer over one field in northeastern Italy (Supplemen-
tal Fig. A.1).

Transect EMI surveys were used to measure apparent electrical
conductivity (ECa), following the ECa survey protocols of Corwin
and Lesch (2005b), over the 0–1.50 m soil depth in four agricul-
tural fields in California, USA (Supplemental Fig. A.1 and
Table A.1): Fields 1, 2, 3 in the western San Joaquin Valley, and
Field 4 in the San Jacinto Valley. Data for Fields 1, 2, and 4 were
taken from Scudiero et al. (2014). Data for Field 4 was taken from
Corwin et al. (2010). Measurements were carried out using an
EM38 (Geonics Ltd., Mississauga, Ontario, Canada2) sensor, con-
nected to a Trimble (Sunnyvale, CA, USA2) GPS system with deci-
metric precision in horizontal positioning and mounted on a non-
metallic sled (as shown in Fig. 5 of Corwin and Lesch, 2005b). Field
1 (20.7 ha) was surveyed with 111 transects, on average �6 m
apart, totaling 13,440 ECa readings (Fig. 1). Field 2 (6.4 ha) was sur-
veyed with 8 transects, on average �9 m apart, totaling 1311 ECa

readings (Supplemental Fig. A.2). Field 3 (40.5 ha) was surveyed
with 18 transects, on average �32 m apart, totaling 1204 ECa read-
ings (Supplemental Fig. A.3). Field 4 (6.9 ha) was surveyed with 44
transects, on average �4 m apart, totaling 3502 ECa readings (Sup-
plemental Fig. A.4).

For Field 5, on-the-go bare-soil reflectance at 590 ± 5.5 nm (VIS)
and at 880 ± 5.5 nm (NIR) was measured with an active spectrom-
eter (ACS-210-CropCircle, Holland Scientific, Lincoln, NE, USA)
linked with a Trimble (Sunnyvale, CA, USA2) GPS system with deci-
metric precision in horizontal positioning over a 25.8-ha field in
Chioggia, Italy (Supplemental Fig. A.1 and Table A.1). The NIR and
VIS readings were used to calculate the normalized difference veg-
etation index (NDVI) (Rouse et al., 1973):

NDVI ¼ NIR � VIS
VISþ NIR

ð1Þ

The survey at Field 5 was carried out over 22 transects, on aver-
age �27 m apart, totaling 7403 NDVI readings (Supplemental
Fig. A.5). Data for Field 5 was taken from Scudiero et al. (2013).

2.2. Spatial interpolations specifications

In this paper, we discuss the quality assessment of model-based
(i.e., universal kriging) and deterministic (i.e., inverse distance
weighting) spatial interpolation techniques.

2.2.1. Kriging
At all fields, ECa and bare-soil NDVI data were characterized by

the presence of spatial trend and were interpolated using Universal
Kriging (UK). Data for Field 1 and 3 were normalized using square-
root transformation and Field 4 was normalized with natural loga-
rithm transformation. To carry out the interpolation, the spatial
correlation structures of ECa and of bare-soil NDVI were modeled
by an isotropic penta-spherical semi-variogram, m(ECa):
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where g represents the nugget variance, r the spatial variance com-
ponent (partial sill), h the lag distance, and r the range. Semi-
variograms were considered accurate when the loo resampling
average kriging standard error (i.e., the squared-root average of
the kriging variance at all locations) was very close to the RMSE
(Robinson and Metternicht, 2006). Semi-variogram specifications
are reported in Table 1 (for Field 1) and Supplemental Table A.3
(for the other fields). Kriging interpolations were performed using
a maximum of 40 neighbors.

2.2.2. Inverse distance weighting
Inverse distance weighting (IDW) estimates values at un-

sampled locations as weighted average of the known data points
within a selected number of neighbors of the un-sampled location:

x0 ¼
Pn

i¼1xi � d�w
iPn

i¼1d
�w
i

ð3Þ

where x0 is the value to be estimated, xi is the know value at loca-
tion i within the neighborhood of n known points (i.e., n = 40), d is
the distance of x0 to xi, and w (>0) is the IDW weighting exponent.
The lower w, the more uniformly the n neighbors are incorporated
into the calculation of x0. Contrarily, with high weighting exponent
values, the estimation of x0 is mainly determined by the closest xi
values (Robinson and Metternicht, 2006). The Model Optimization
feature in Arc Map’s (version 10.1; ESRI, Redlands, CA, USA) Geosta-
tistical Analyst was used to determine the best w by minimizing the
loo resampling residual sum of squares.

2.3. Interpolation quality assessment: spatial h-block (SHB)
resampling

In the SHB, each observation is removed from the dataset and
used for validation. Then, according to an arbitrary threshold
neighborhood size, neighboring locations to the validation obser-
vation are removed. The threshold neighborhood is, in this manu-
script, a circular area of radius of size h.dist. The remaining
observations (i.e., training dataset) are used to interpolate the
selected variable at the validation location. The interpolated pre-
diction is then compared to the observed (left-out) value. Similar
to the classical loo resampling, the above described procedure is
repeated for every observation of the dataset. Finally, the size of
the error of the SHB predictions from the actual observed data is
used as the metric to evaluate the quality of the spatial interpola-
tion model (i.e., interpolation prediction errors). In this work, we
analyze the resampling root mean square error (RMSE) of spatial
interpolations.

The SHB procedure for UK and IDW was carried out in the R
(version 3.2.0, R Core Team, 2015) environment. For each valida-
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