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Motivated by an example in Magnani (in press), we study, inside a separable
metric space (X, d), the relations between centered and non centered m-dimensional
densities of a Radon measure µ in X and their relations with spherical and centered
spherical m-dimensional Hausdorff measures. Eventually we give an application to
finite perimeter sets in Carnot groups.
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1. Introduction

In a recent interesting note [15], Valentino Magnani observed the following fact. In a separable metric
space (X, d), endowed with a Radon measure µ, absolutely continuous with respect to the m-dimensional
spherical measure Sm, the area formula for µ with respect to Sm i.e.

µ(B) =

B

Θ∗mF (µ, x) dSm(x) (1.1)

for any Borel set B may fail to be true if the m-dimensional Federer density Θ∗mF (µ, ·) is substituted by the
(centered) m-dimensional density Θ∗m(µ, ·) (see Definition 1.7(i) and (ii)).

Indeed Magnani provides the following example: in the Heisenberg group X = H1 ≡ R3, equipped with
its sub-Riemannian metric d, there are a Radon measure µ, a set A ⊂ H1 and two constants 0 < k1 < k2
such that µ is absolutely continuous w.r.t. S2 and for all x ∈ A

Θ2(µ, x) = k1 < k2 = Θ∗2F (µ, x)

and for all t ∈ (k1, k2)

µ(A) > tS2(A). (1.2)
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Because of (1.2), given A ⊂ X and k > 0, the implication

Θm(µ, x) = k ∀x ∈ A⇒ µ A = k Sm A (1.3)

fails to be true in general.
Implication (1.3) was used by us to prove that the perimeter measure |∂E|G agrees, up to a multiplicative

constant, with the (Q − 1)-dimensional spherical Hausdorff measure SQ−1, in a step 2 Carnot group G of
Hausdorff dimension Q. Hence a new proof of this result is in order.

Indeed, in [14], Magnani himself provides an alternative proof of our result using his new notion of (n−1)
vertical regular distance (see Theorem 4.19 in this paper).

We take here a different approach to the same topic. From the preceding considerations it appears
that Federer density Θ∗mF (µ, x) plays a privileged role in area formulas when the spherical measure Sm
is used. On the other hand, non centered densities as Θ∗mF (µ, x) are often harder to compute than the
corresponding centered densities Θ∗m(µ, x). Therefore, motivated by Magnani’s note, we looked for an area
formula different from (1.1) in which the density Θ∗m(µ, x) is used, but the measure Sm is replaced by an
equivalent one.

Centered Hausdorff measures Cm (see Definition 2.1(iii)) seem to be the right substitutes. Indeed we
could prove the following theoretic area formula: if A is a Borel set in a metric space X, if µ A is absolutely
continuous with respect to Cm A then for each Borel B ⊂ A,

µ(B) =

B

Θ∗m(µ, x) dCm(x), (1.4)

see Theorem 3.1 and Corollary 3.14.
Centered Hausdorff measures Cm were introduced in [19] to estimate more efficiently the Hausdorff

dimension of self-similar fractal sets (see also [13]). Inside a general metric space a detailed study of centered
Hausdorff measures has been carried on in [6].

Spherical and centered Hausdorff measures Sm and Cm may disagree (see [19]), even if they are equivalent,
that is

Sm ≤ Cm ≤ 2m Sm.

However in the Euclidean case, i.e. when X = Rn, they agree on rectifiable sets (see [19]). We show that this
coincidence keeps being true for the simplest 1-dimensional submanifolds, namely Lipschitz curves, within a
general metric setting (see Theorem 2.6). Besides, the coincidence is still true inside Carnot groups for the
case of homogeneous dimension Q (see Corollary 4.13) and for 1-codimensional intrinsic rectifiable sets (see
Theorem 4.28).

Using area formula (1.4) a new proof of the previously mentioned representation result for the perimeter
measure |∂E|G follows, so filling – in a different way – the gaps in [8,9,16].

Let us introduce some notation and notions. Throughout this paper (X, d) is a separable metric space,

B(a, r) := {x ∈ X : d(a, x) ≤ r}

are the closed ball with center a and radius r > 0. The diameter of a set E ⊂ X is denoted as

diam(E) := sup {d(x, y) : x, y ∈ E} .

If µ is an outer measure in X and A ⊂ X the restriction of µ to A is denoted as

µ A(E) = µ(A ∩ E) if E ⊂ X.

We assume the following condition on the diameter of closed balls: there are constants ρ0, 0 < ρ0 ≤ 2
and δ0 > 0 such that, for all r ∈ (0, δ0) and x ∈ X,

diam(B(x, r)) = ρ0 r. (1.5)
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