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a b s t r a c t

In this paper, we study the decay rate in time to solutions of the Cauchy problem
for the one-dimensional viscous conservation law where the far field states are
prescribed. Especially, we deal with the case that the flux function which is convex
and also the viscosity is a nonlinearly degenerate one (p-Laplacian type viscosity). As
the corresponding Riemann problem admits a Riemann solution as the constant state
or the single rarefaction wave, it has already been proved by Matsumura–Nishihara
that the solution to the Cauchy problem tends toward the constant state or the
single rarefaction wave as the time goes to infinity. We investigate that the decay
rate in time of the corresponding solutions and their derivative. These are the first
results concerning the asymptotic decay of the solutions and their derivative to the
Cauchy problem of the scalar conservation law with nonlinear viscosity. The proof
is given by L1, L2-energy and time-weighted Lq-energy methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and main theorems

In this paper, we shall consider the asymptotic behavior of solutions for the one-dimensional scalar
conservation law with a nonlinearly degenerate viscosity (p-Laplacian type viscosity with p > 1)

∂tu+ ∂x

f(u)


= µ∂x


| ∂xu |p−1

∂xu


(t > 0, x ∈ R),
u(0, x) = u0(x) (x ∈ R),

lim
x→±∞

u(t, x) = u±

t ≥ 0


.

(1.1)

Here, u = u(t, x) denotes the unknown function of t > 0 and x ∈ R, the so-called conserved quantity, f = f(u)
is the flux function depending only on u, µ is the viscosity coefficient, u0 is the given initial data, and constants
u± ∈ R are the prescribed far field states. We suppose the given flux f = f(u) is a C3-function satisfying
f(0) = f ′(0) = 0, µ is a positive constant and far field states u± satisfy u− < u+ without loss of generality.
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At first, we shall motivate the physical meaning to the nonlinearly degenerate viscosity and review the
related models concerning with the Cauchy problem (1.1). It is known that if p = 1 and f(u) = 1

2u
2, the

equation in our problem (1.1) becomes the viscous Burgers equation:

∂tu+ u ∂xu = µ∂2xu.

In particular, the viscosity term µ∂2xu stands for Newtonian fluid. The Newtonian fluid is what satisfies the
relation between the strain rate ∂xjui + ∂xiuj (∂xu, for one-dimensional case) is linear, that is,

τ = µ

∂xjui + ∂xiuj


or τ = µ∂xu.

On the other hand, if a fluid satisfies the relation between the strain rate and the stress is nonlinear (for
example, polymers, viscoelastic or viscoplastic flow), the fluid is a non-Newtonian fluid, such as, blood,
honey, butter, whipped cream, suspension, and so on. The typical nonlinearity in the non-Newtonian fluid
is the power-law fluid (cf. [20]), that is,

τ = µ

∂xjui + ∂xiuj

p or τ = µ ( ∂xu )p .

Ladyženskaja [14] has proposed a new mathematical model for the incompressible Navier–Stokes equation
with the power-law type nonlinear viscosity (see also [3]). The Ladyženskaja equation is the following:

∂tui + uj ∂xjui = −∂xip+ ∂xj


µ0 + µ1


i,j

( ∂xiuj )2
 r

2

∂xjui


+ fi

where i = 1, 2, or i = 1, 2, 3. In particular, if µ0 = 0, µ1 > 0 and r > −1, this model is said to be the
Ostwald–de Waele model:

∂tui + uj ∂xjui = −∂xip+ ∂xj

µ |Du⃗ |r


∂xjui


+ fi

where |Du⃗ | :=


i,j ( ∂xiuj )2
 1

2

, and i = 1, 2, or i = 1, 2, 3. In this sense, our viscosity µ∂x

| ∂xu |p−1

∂xu


should be called the Ostwald–de Waele type viscosity.
We are interested in the asymptotic behavior and its precise estimates in time of the global solution to

our problem (1.1). It can be expected that the large-time behavior is closely related to the weak solution
(“Riemann solution”) of the corresponding Riemann problem (cf. [16,33]) for the non-viscous hyperbolic
part of (1.1): 

∂tu+ ∂x

f(u)


= 0 (t > 0, x ∈ R),

u(0, x) = uR0 (x) (x ∈ R),
(1.2)

where uR0 is the Riemann data defined by

uR0 (x) = uR0 (x;u−, u+) :=

u− (x < 0),
u+ (x > 0).

In fact, for p = 1 in (1.1), the usual linear viscosity case:
∂tu+ ∂x


f(u)


= µ∂2xu (t > 0, x ∈ R),

u(0, x) = u0(x) (x ∈ R),
lim
x→±∞

u(t, x) = u±

t ≥ 0


,

(1.3)

when the smooth flux function f is genuinely nonlinear on the whole space R, i.e., f ′′(u) ̸= 0 (u ∈ R),
Il’in–Olĕınik [11] showed the following: if f ′′(u) > 0 (u ∈ R), that is, the Riemann solution consists of
a single rarefaction wave solution, the global solution in time of the Cauchy problem (1.3) tends toward
the rarefaction wave; if f ′′(u) < 0 (u ∈ R), that is, the Riemann solution consists of a single shock wave
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