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This paper is concerned with the Cauchy problem for a generalized two-component
Camassa–Holm shallow water system. We prove that the solution will maintain the
corresponding properties at infinity within its lifespan provided the initial data decay
exponentially and algebraically, respectively.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the following generalized two-component Camassa–Holm system (G2CH):
mt + σ(umx + 2uxm) + 3(1− σ)uux + ρρx = 0,
ρt + (uρ)x = 0,

where m = u−uxx and σ is a real parameter. (G2CH) was recently derived in [4] following Ivanov’s modeling
method [24]. It is a model from the shallow water theory with nonzero constant vorticity, where u(t, x) is the
horizontal velocity and ρ(t, x) is related to the free surface elevation from equilibrium (or scalar density). The
real dimensionless constant σ is a parameter which provides the competition, or balance, in fluid convection
between nonlinear steepening and amplification due to stretching. Recently, some mathematical properties
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such as wave-breaking phenomena, global existence of strong solution and stability of solitary waves of the
Cauchy problem for (G2CH) have been studied in [4,5].

For ρ ≡ 0, (G2CH) becomes

ut − utxx + 3uux = σ(2uxuxx + uuxxx), (1.1)

which models finite length, small amplitude radial deformation waves in cylindrical hyper-elastic rods [15].
Here u(t, x) represents the radial stretch relative to a pre-stressed state.

For σ = 1, Eq. (1.1) becomes the celebrated Camassa–Holm equation (CH), modeling the unidirectional
propagation of shallow water waves over a flat bottom. Here u(t, x) stands for the fluid velocity at time
t in the spatial x direction [2,17]. CH is also a model for the propagation of axially symmetric waves in
hyper-elastic rods [15]. It has a bi-Hamiltonian structure [19] and is completely integrable [2,8]. Also there
is a geometric interpretation of CH in terms of geodesic flow on the diffeomorphism group of the circle [13].
Its solitary waves are peaked [3]. They are orbitally stable and interact like solitons [1,14]. The Cauchy
problem for CH has been studied extensively [9–11,16,23]. It has been shown that this equation is locally
well-posed [9,10,16] for initial data u0 ∈ Hs(R), s > 3

2 . Moreover, it has global strong solutions [9,10,7] and
also finite time blow-up solutions [9–11,7]. The advantage of CH in comparison with the KdV equation lies in
the fact that CH has peaked solitons and models wave breaking [3,11] (by wave breaking we understand that
the wave remains bounded while its slope becomes unbounded in finite time [25]). In addition, persistence
properties and unique continuation of the solution to CH have been studied in [23].

For ρ ̸≡ 0 and σ = 1, (G2CH) recovers the standard two-component Camassa–Holm system (2CH) which
was recently derived rigorously in [24,12]. The Cauchy problems for (2CH) have been studied in many works,
cf. [12,6,18,20–22]. Local well-posedness for (2CH) with the initial data in Sobolev spaces and in Besov spaces
has been established in [12,18,21]. The blow-up phenomena and global existence of strong solutions to (2CH)
in Sobolev spaces have been derived in [18,20–22].

Note that the following boundary assumption is required in the hydrodynamical derivation of (G2CH) [4],
u(t, x) → 0 and ρ(t, x) → 1 as |x| → ∞, at any instant t. Then, setting η , ρ − 1, we can rewrite (G2CH)
as follows: 

mt + σumx + 2σuxm+ 3(1− σ)uux + (η + 1)ηx = 0,
ηt + uηx + ux(η + 1) = 0.

(1.2)

Using the Green function p(x) , 1
2e
−|x|, x ∈ R and the identity (1 − ∂2

x)−1f = p ∗ f for all f ∈ L2(R), we
can set up the Cauchy problem for (G2CH):

ut + σuux + ∂xp ∗ F (u, η) = 0, t > 0, x ∈ R,
ηt + uηx + ux(η + 1) = 0, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,
η(0, x) = η0(x), x ∈ R,

(1.3)

where F (u, η) , 3−σ
2 u2 + σ

2u
2
x + 1

2η
2 + η.

The goal of this paper is to investigate the persistence properties of the solution to System (1.3). We will
prove that the solution maintains the corresponding properties at infinity within its lifespan provided the
initial data decay exponentially and algebraically, respectively (see Theorems 3.1 and 3.2).

Our paper is organized as follows. In Section 2, we recall the local well-posedness of System (1.3) in
Sobolev spaces and prove a useful lemma which is crucial to the proof of main theorems later. In Section 3,
two persistence properties of the solution to System (1.3) are given.
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