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In this paper, the authors prove several equivalent characterizations of Sobolev
spaces of even integer orders on Rn, using the average

Btf(x) := 1
|B(x, t)|


B(x,t)

f(y) dy

of a function f over the ball B(x, t) := {y ∈ Rn : |y − x| < t} with x ∈ Rn
and t ∈ (0,∞). These characterizations rely only on the metric and the Lebesgue
measure on Rn and are simpler than those obtained recently by Alabern et al.
(2012). Moreover, these results may shed new light on the theory of high order
Sobolev spaces on spaces of homogeneous type.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of introducing Sobolev spaces on metric measure spaces where differential structures are not
available is one of the central topics in analysis. A very important progress on this problem was achieved by
Hajlasz [10], who successfully introduced a concept of gradients (now widely known as the Hajlasz gradients
in literatures) and used it to introduce the first order Sobolev spaces on metric measure spaces. The Hajlasz
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gradients have become a powerful tool in the study of the first order Sobolev spaces on metric measure spaces;
see, for example, [10–12,16,25]. After the pioneering work of Hajlasz [10], several different approaches were
proposed by different authors to introduce and study first-order Sobolev spaces on metric measure spaces
(see, for example, [8,18,12,11,25,15]). Indeed, great success has been achieved on the theory of the first order
Sobolev spaces on metric measure spaces over the last two decades. On the other hand, however, the problem
of developing a successful theory of higher order Sobolev spaces on metric measure spaces remains open and
has attracted a lot of attentions in recent years.

Very recently, Alabern, Mateu and Verdera [1] obtained an interesting new characterization of Sobolev
spaces on Rn, which relies only on the metric and the Lebesgue measure on Rn and hence provides a
possible way to introduce Sobolev spaces of arbitrary order of smoothness on any metric measure space. To
describe this new characterization, we first recall that the (inhomogeneous) Sobolev spaces Wα, p(Rn) on
Rn consist of all functions f on Rn such that ∥f∥Wα, p(Rn) := ∥f∥Lp(Rn) + ∥(−∆)α/2f∥Lp(Rn) <∞. Here and
throughout this article, the smoothness index α is any positive real number, p ∈ (1,∞), ∆ :=

n
i=1( ∂∂xi )

2

is the Laplacian, and (−∆)α/2 is the fractional Laplacian defined in terms of the distributional Fourier
transform via ((−∆)α/2f)∧(ξ) := |ξ|α f(ξ) for any tempered distribution f . Next, we recall a well-known
classical characterization of Wα, p(Rn) via square functions (see, for example, [24,19,20,25]), which asserts
that, for α ∈ (0, 1) and p ∈ (1,∞), f ∈ Wα, p(Rn) if and only if f ∈ Lp(Rn) and sα(f) ∈ Lp(Rn), where
sα(f) is the square function given by

sα(f)(·) :=


 ∞

0


−

B(·, t)

|f(·)− f(y)| dy
2
dt

t1+2α


1/2

. (1.1)

Here and hereafter, we use the following notation: for g ∈ L1
loc(Rn), x ∈ Rn and t ∈ (0,∞),

B(x, t) := {y ∈ Rn : |y − x| < t},

−

B(x,t)

g(y) dy := 1
|B(x, t)|


B(x,t)

g(y) dy =: Btg(x). (1.2)

Such a characterization, however, fails for α ≥ 1. Indeed, it is known that, if α ≥ 1, then ∥f∥Lp(Rn) +
∥sα(f)∥Lp(Rn) <∞ implies f ≡ 0 on Rn (see [9, Section 4]).

In order to have a similar characterization for Wα,p(Rn) with α ≥ 1, Alabern, Mateu and Verdera [1]
introduced a new square function Sα, with a slight modification of the definition of sα(f) via dropping the
absolute value in |f(·)− f(y)| of (1.1), given by

Sα(f)(·) :=


 ∞

0

−

B(·, t)

[f(·)− f(y)] dy


2
dt

t1+2α


1/2

, f ∈ L1
loc(Rn). (1.3)

It turns out that such a modification is significant enough for the authors of [1] to establish a characterization
for all Sobolev spaces of smoothness orders α ∈ (0, 2): for α ∈ (0, 2) and p ∈ (1,∞), f ∈ Wα,p(Rn) if and
only if f ∈ Lp(Rn) and Sα(f) ∈ Lp(Rn). The key point here is that, unlike the classical square function
sα in (1.1), this new function Sα in (1.3) provides smoothness up to order 2, namely, for f ∈ C2(Rn) and
t ∈ (0, 1),

−

B(x, t)

[f(x)− f(y)] dy = O(t2), x ∈ Rn. (1.4)

This phenomenon, followed directly from the Taylor expansion, was first observed by Wheeden in [23] (see
also [24]) and later independently by Alabern, Mateu and Verdera in [1].

A more complicated characterization of Wα,p(Rn) for higher orders of smoothness (i.e., α ≥ 2) was also
established in [1, Theorems 2 and 3]. To be precise, assume that α ∈ [2N, 2N + 2) with N ∈ N := {1, 2, . . .}.
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