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In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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We present sufficient conditions for the existence of a periodic solution for a class of
systems describing the periodically forced motion of a massive point on a compact
surface with a boundary.
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1. Brief introduction

In 1922, G. Hamel proved [4] that equations describing the motion of a periodically forced pendulum
have at least one periodic solution. Since then, many results concerning periodic solutions in pendulum-like
systems have been obtained by various authors including theorems for a one-dimensional forced pendulum [5],
a result by M. Furi and M. P. Pera [3], who showed that a frictionless spherical pendulum also has forced
oscillations, and work by V. Benci and M. Degiovanni [1], who studied the motion of a massive point on
a compact boundaryless surface with friction and presented sufficient conditions for the existence of forced
oscillations. As far as we know, the case of a compact surface with a boundary is far less developed.

However, surfaces with boundaries naturally appear in various mechanical systems. For instance, in a
book [2] by R. Courant and H. Robbins, the authors consider the system of an inverted planar pendulum
placed on the floor of a train carriage, and show that for any law of motion for the train, there always exists at
least one initial position such that the pendulum, starting its motion from this position with zero generalized
velocity, moves without falling for an arbitrary long time. Here, the compact surface is a half-circle and its
boundary is the two-pointed set.

Topological ideas, which lie in the basis of the above result, can be rigorously justified [6] – in [2] some
details are omitted – and generalized for different types of systems. Moreover, it was proved [6] that for an
inverted pendulum with a periodic law of motion for its pivot point, there exists a periodic solution along
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which the pendulum never becomes horizontal, i.e. it never falls. This was obtained as an application of a
topological theorem by R. Srzednicki, K. Wójcik, and P. Zgliczyński [7].

In the current paper we further develop this result [6] and present sufficient conditions for the existence
of a periodic solution for a class of systems describing periodically forced motion with friction of a massive
point on a compact surface with a boundary and non-zero Euler–Poincaré characteristic. We prove that if
for the considered system all solutions that are tangent to the boundary are externally tangent to it, then
there exists at least one periodic solution that never reaches the boundary.

2. Main result

2.1. Governing equations

In this subsection, we introduce governing equations for a mechanical system consisting of a massive point
moving with friction-like interaction on a surface and prove a lemma, which we are going to use further in
our main theorem. For the sake of simplicity, we assume that all manifolds and considered functions are
smooth (i.e. C∞).

Let M be a compact connected two-dimensional manifold with a boundary embedded in R3. Manifold M
describes the surface on which a massive point moves. Its boundary is a finite collection of curves, which are
homeomorphic to circles. We also assume that the point moves with friction, which we will specify further
below.

In our further consideration, we will study the behavior of our system in a vicinity of ∂M . In this regard, it
is convenient to consider an enlarged manifold M+. Let M+ be a boundaryless connected two-dimensional
manifold also embedded in R3 such that M ⊂ M+. Therefore, the motion of the massive point can be
described by a function of time q: R→M+. Note that there are infinitely many possibilities for constructing
M+ but for our use they are all the same.

In general form, the equations of motion can be written as follows:

mq̈ = F + Ffriction + Fconstraint .

Here m is the mass of the point; F : R/TZ × TM+ → R3 is a T -periodic force acting on the point;
Ffriction: R/TZ × TM+ → R3 is a friction-like force which, for a given t, q and q̇, we assume to have
the following form:

Ffriction = −q̇γ(t, q, q̇), γ: R/TZ× TM+ → R.

The force of constraint has usual form Fconstraint = λnq, where λ ∈ R and nq is a normal vector to M+ at
point q.

Finally, assuming without loss of generality that m = 1, we obtain the following equations of motion:

q̇ = p,
ṗ = F (t, q, p)− pγ(t, q, p) + λnq.

(1)

Note that one can get rid of unknown parameter λ in (1) in the usual way by projecting the right-hand sides
of the above equations to TqM+.

Lemma 2.1. Suppose that there exists a constant d > 0 such that in (1)

inf
t∈[0,T ], q∈M

∥p∥>d

γ(t, q, p) > 0, (2)
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