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the existence and uniqueness of the solution are derived. 
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Our aim in this paper is to deal with the boundedness of the Hardy–Littlewood
maximal operator in non-homogeneous central Herz–Morrey–Orlicz spaces. As an
application, we give Sobolev’s inequality for Riesz potentials.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let RN be the Euclidean space. In [3], Beurling introduced the space Bp(RN ) to extend Wiener’s
ideas [23,24] which describes the behavior of functions at infinity. Feichtinger [8] gave an equivalent norm
on Bp(RN ), which is a special case of norms in Herz spaces Kα,rp (RN ) introduced by Herz [13]. More pre-
cisely, Bp(RN ) = K

−N/p,∞
p (RN ) (see also [11]). Alvarez, Guzmán-Partida and Lakey [2] defined the central

Morrey spaces Bp,λ(RN ) to study the relationship with λ-central bounded mean oscillation spaces, where
Bp,0(RN ) = Bp(RN ).

In [10], Garćıa-Cuerva studied the boundedness of the maximal operator on the space Bp(RN ).
Further, Li and Yang [14] showed that the maximal operator is bounded on homogeneous Herz spaces
and non-homogeneous Herz spaces. Our first aim in this paper is to introduce non-homogeneous central
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Herz–Morrey–Orlicz spaces HΦ,q,ω(RN ) as an extension of Kα,rp (RN ), and study the boundedness of the
Hardy–Littlewood maximal operator (see Theorem 3.9).

In classical Lebesgue spaces, we know Sobolev’s inequality:

∥Iαf∥Lp∗ (RN ) ≤ C∥f∥Lp(RN )

for f ∈ Lp(RN ), 0 < α < N and 1 < p < N/α, where Iα is the Riesz kernel of order α and 1/p∗ = 1/p−α/N
(see, e.g. [1, Theorem 3.1.4]). Fu, Lin and Lu [9] showed Sobolev’s inequality for Bp,λ(RN ) (see also [14] for
non-homogeneous Herz spaces, [4,5] for non-homogeneous Herz–Morrey spaces, and [16] for non-homogeneous
central Morrey spaces). Our second aim is to give Sobolev’s inequality for Riesz potentials of functions in
non-homogeneous central Herz–Morrey–Orlicz spaces (see Theorem 4.5).

Suppose f ∈ Hp,q,ω(RN ), that is, it satisfies an Lp integrability such as ∞
1


ω(r)∥f∥Lp(A(0,r))

q dr
r
<∞ when 0 < q <∞,

sup
r>1

ω(r)∥f∥Lp(A(0,r)) <∞ when q =∞,

where ω is a doubling weight, 1 < p < ∞ and A(0, r) = B(0, 2r) \ B(0, r) is the annulus with B(x, r)
denoting the open ball centered at x of radius r. Then we want to find p1 and a weight τ such that
Iαf ∈ Hp1,q,τ (RN ) (see Theorems 4.5 and 4.11 and their remarks). In the borderline case αp = N , instead
of Trudinger’s inequality, we show the weighted Lp integrability

RN


(1 + |x|)−N/p(log(e+ |x|))−1+θ|Iαf(x)|

p
dx ≤ C


RN


(log(e+ |y|))θ|f(y)|

p
dy

as in Edmunds and Triebel [7]; see Theorem 4.12.
Since it may happen that Iα|f | ≡ ∞ for some f ∈ HΦ,q,ω(RN ), we modify the Riesz kernel Iα by

Iα,k(x, y) =


Iα(x− y) when |y| < 1,

Iα(x− y)−


{µ:|µ|≤k−1}

xµ

µ! (DµIα)(−y) when |y| ≥ 1

for a nonnegative integer k (see [17,18]); Iα,0 is the usual Riesz kernel Iα of order α. Then our third task is
to find k such that the generalized Riesz potential

Iα,kf(x) =


RN
Iα,k(x, y)f(y) dy

is well defined for almost every x ∈ RN and belongs to a suitable non-homogeneous central Herz–
Morrey–Orlicz space (see Theorem 5.4).

Finally, following Gogatishvili–Mustafayev [12], we study the duality properties between HΦ,q,ω(RN ) and
HΦ,q,ω(RN ) (for the definition of HΦ,q,ω(RN ) and HΦ,q,ω(RN ), see Section 2).

2. Preliminaries

Let us consider a function

Φ(t) = tφ(t) : [0,∞)→ [0,∞)

with φ satisfying the following conditions:
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