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1. Introduction

Let RY be the Euclidean space. In [3], Beurling introduced the space BP(R”") to extend Wiener’s
ideas [23,24] which describes the behavior of functions at infinity. Feichtinger [8] gave an equivalent norm
on BP(RY), which is a special case of norms in Herz spaces K" (RY) introduced by Herz [13]. More pre-
cisely, BP(RN) = K;N/p’oo(RN) (see also [11]). Alvarez, Guzméan-Partida and Lakey [2] defined the central
Morrey spaces BP*(RY) to study the relationship with A-central bounded mean oscillation spaces, where
BPO(RN) = BP(RY).

In [10], Garcfa-Cuerva studied the boundedness of the maximal operator on the space BP(RY).
Further, Li and Yang [14] showed that the maximal operator is bounded on homogeneous Herz spaces
and non-homogeneous Herz spaces. Our first aim in this paper is to introduce non-homogeneous central
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Herz-Morrey-Orlicz spaces H?4“(RY) as an extension of Kg"(R"), and study the boundedness of the
Hardy-Littlewood maximal operator (see Theorem 3.9).

In classical Lebesgue spaces, we know Sobolev’s inequality:
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for f € LP(RY),0 < a < N and 1 < p < N/a, where I, is the Riesz kernel of order « and 1/p* = 1/p—a/N
(see, e.g. [1, Theorem 3.1.4]). Fu, Lin and Lu [9] showed Sobolev’s inequality for BP*(R™) (see also [14] for
non-homogeneous Herz spaces, [4,5] for non-homogeneous Herz—Morrey spaces, and [16] for non-homogeneous
central Morrey spaces). Our second aim is to give Sobolev’s inequality for Riesz potentials of functions in
non-homogeneous central Herz—Morrey—Orlicz spaces (see Theorem 4.5).

Suppose f € HP«(RY), that is, it satisfies an LP integrability such as

> dr
/ {W(T)||f||Lp(A(o,7-))}q . < oo when 0 < g < oo,
1
Sull)w(r)”fHLP(A(o,r)) < oo when ¢ = o0,
r>
where w is a doubling weight, 1 < p < oo and A(0,7) = B(0,2r) \ B(0,r) is the annulus with B(z,r)
denoting the open ball centered at x of radius r. Then we want to find p; and a weight 7 such that

I.f € HPv¢7(RYN) (see Theorems 4.5 and 4.11 and their remarks). In the borderline case ap = N, instead
of Trudinger’s inequality, we show the weighted LP integrability
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as in Edmunds and Triebel [7]; see Theorem 4.12.
Since it may happen that I,|f| = co for some f € H*%(RY), we modify the Riesz kernel I, by

In(x —y) when |y| < 1,

7
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for a nonnegative integer k (see [17,18]); I, o is the usual Riesz kernel I, of order .. Then our third task is
to find & such that the generalized Riesz potential
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RN
is well defined for almost every x € RY and belongs to a suitable non-homogeneous central Herz-

Morrey-Orlicz space (see Theorem 5.4).

Finally, following Gogatishvili-Mustafayev [12], we study the duality properties between H%'%“(RN) and
789w

H (RN) (for the definition of H®**(RN) and ﬁé’q’w(RN), see Section 2).
2. Preliminaries

Let us consider a function

with ¢ satisfying the following conditions:
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