Boundedness of the maximal operator and Sobolev's inequality on non-homogeneous central Herz-Morrey-Orlicz spaces

Yoshihiro Mizuta ${ }^{\text {a }}$, Takao Ohno ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mechanical Systems Engineering, Hiroshima Institute of Technology,
2-1-1 Miyake Saeki-ku Hiroshima 731-5193, Japan
${ }^{\text {b }}$ Faculty of Education and Welfare Science, Oita University, Dannoharu Oita-city 870-1192, Japan

A R T I C L E I N F O

Article history:
Received 23 April 2015
Accepted 18 August 2015
Communicated by Enzo Mitidieri
MSC:
primary 31B15
46E35

Keywords:

Maximal operator
Non-homogeneous
Central Herz-Morrey-Orlicz spaces
Riesz potentials
Sobolev's inequality

Abstract

Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator in non-homogeneous central Herz-Morrey-Orlicz spaces. As an application, we give Sobolev's inequality for Riesz potentials. © 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let \mathbf{R}^{N} be the Euclidean space. In [3], Beurling introduced the space $B^{p}\left(\mathbf{R}^{N}\right)$ to extend Wiener's ideas [23,24] which describes the behavior of functions at infinity. Feichtinger [8] gave an equivalent norm on $B^{p}\left(\mathbf{R}^{N}\right)$, which is a special case of norms in Herz spaces $K_{p}^{\alpha, r}\left(\mathbf{R}^{N}\right)$ introduced by Herz [13]. More precisely, $B^{p}\left(\mathbf{R}^{N}\right)=K_{p}^{-N / p, \infty}\left(\mathbf{R}^{N}\right)$ (see also [11]). Alvarez, Guzmán-Partida and Lakey [2] defined the central Morrey spaces $B^{p, \lambda}\left(\mathbf{R}^{N}\right)$ to study the relationship with λ-central bounded mean oscillation spaces, where $B^{p, 0}\left(\mathbf{R}^{N}\right)=B^{p}\left(\mathbf{R}^{N}\right)$.

In [10], García-Cuerva studied the boundedness of the maximal operator on the space $B^{p}\left(\mathbf{R}^{N}\right)$. Further, Li and Yang [14] showed that the maximal operator is bounded on homogeneous Herz spaces and non-homogeneous Herz spaces. Our first aim in this paper is to introduce non-homogeneous central

[^0]Herz-Morrey-Orlicz spaces $\mathcal{H}^{\Phi, q, \omega}\left(\mathbf{R}^{N}\right)$ as an extension of $K_{p}^{\alpha, r}\left(\mathbf{R}^{N}\right)$, and study the boundedness of the Hardy-Littlewood maximal operator (see Theorem 3.9).

In classical Lebesgue spaces, we know Sobolev's inequality:

$$
\left\|I_{\alpha} f\right\|_{L^{p^{*}}\left(\mathbf{R}^{N}\right)} \leq C\|f\|_{L^{p}\left(\mathbf{R}^{N}\right)}
$$

for $f \in L^{p}\left(\mathbf{R}^{N}\right), 0<\alpha<N$ and $1<p<N / \alpha$, where I_{α} is the Riesz kernel of order α and $1 / p^{*}=1 / p-\alpha / N$ (see, e.g. [1, Theorem 3.1.4]). Fu, Lin and Lu [9] showed Sobolev's inequality for $B^{p, \lambda}\left(\mathbf{R}^{N}\right)$ (see also [14] for non-homogeneous Herz spaces, [4,5] for non-homogeneous Herz-Morrey spaces, and [16] for non-homogeneous central Morrey spaces). Our second aim is to give Sobolev's inequality for Riesz potentials of functions in non-homogeneous central Herz-Morrey-Orlicz spaces (see Theorem 4.5).

Suppose $f \in \mathcal{H}^{p, q, \omega}\left(\mathbf{R}^{N}\right)$, that is, it satisfies an L^{p} integrability such as

$$
\begin{aligned}
& \int_{1}^{\infty}\left\{\omega(r)\|f\|_{L^{p}(A(0, r))}\right\}^{q} \frac{d r}{r}<\infty \quad \text { when } 0<q<\infty \\
& \sup _{r>1} \omega(r)\|f\|_{L^{p}(A(0, r))}<\infty \quad \text { when } q=\infty
\end{aligned}
$$

where ω is a doubling weight, $1<p<\infty$ and $A(0, r)=B(0,2 r) \backslash B(0, r)$ is the annulus with $B(x, r)$ denoting the open ball centered at x of radius r. Then we want to find p_{1} and a weight τ such that $I_{\alpha} f \in \mathcal{H}^{p_{1}, q, \tau}\left(\mathbf{R}^{N}\right)$ (see Theorems 4.5 and 4.11 and their remarks). In the borderline case $\alpha p=N$, instead of Trudinger's inequality, we show the weighted L^{p} integrability

$$
\int_{\mathbf{R}^{N}}\left\{(1+|x|)^{-N / p}(\log (e+|x|))^{-1+\theta}\left|I_{\alpha} f(x)\right|\right\}^{p} d x \leq C \int_{\mathbf{R}^{N}}\left\{(\log (e+|y|))^{\theta}|f(y)|\right\}^{p} d y
$$

as in Edmunds and Triebel [7]; see Theorem 4.12.
Since it may happen that $I_{\alpha}|f| \equiv \infty$ for some $f \in \mathcal{H}^{\Phi, q, \omega}\left(\mathbf{R}^{N}\right)$, we modify the Riesz kernel I_{α} by

$$
I_{\alpha, k}(x, y)= \begin{cases}I_{\alpha}(x-y) \\ I_{\alpha}(x-y)-\sum_{\{\mu:|\mu| \leq k-1\}} \frac{x^{\mu}}{\mu!}\left(D^{\mu} I_{\alpha}\right)(-y) & \text { when }|y|<1 \\ & \text { when } \mid y 1 \geq 1\end{cases}
$$

for a nonnegative integer k (see $[17,18]) ; I_{\alpha, 0}$ is the usual Riesz kernel I_{α} of order α. Then our third task is to find k such that the generalized Riesz potential

$$
I_{\alpha, k} f(x)=\int_{\mathbf{R}^{N}} I_{\alpha, k}(x, y) f(y) d y
$$

is well defined for almost every $x \in \mathbf{R}^{N}$ and belongs to a suitable non-homogeneous central Herz-Morrey-Orlicz space (see Theorem 5.4).

Finally, following Gogatishvili-Mustafayev [12], we study the duality properties between $\underline{\mathcal{H}}^{\Phi, q, \omega}\left(\mathbf{R}^{N}\right)$ and $\overline{\mathcal{H}}^{\Phi, q, \omega}\left(\mathbf{R}^{N}\right)$ (for the definition of $\underline{\mathcal{H}}^{\Phi, q, \omega}\left(\mathbf{R}^{N}\right)$ and $\overline{\mathcal{H}}^{\Phi, q, \omega}\left(\mathbf{R}^{N}\right)$, see Section 2).

2. Preliminaries

Let us consider a function

$$
\Phi(t)=t \phi(t):[0, \infty) \rightarrow[0, \infty)
$$

with ϕ satisfying the following conditions:

https://daneshyari.com/en/article/839469

Download Persian Version:

https://daneshyari.com/article/839469

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: y.mizuta.5x@it-hiroshima.ac.jp (Y. Mizuta), t-ohno@oita-u.ac.jp (T. Ohno).

