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is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
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a b s t r a c t

The problem of the existence of periodic solution for the Liénard equation is inves-
tigated, and a result which improves the classical Dragilev’s theorem is presented,
together with a corollary in which there are no assumptions on the function g(x),
and hence on G(x), besides the standard sign condition. In the final part of the
paper constructive examples with several limit cycles are provided.

© 2015 Elsevier Ltd. All rights reserved.

1. Preliminaries and well known results

In this paper we discuss the problem of existence of periodic solutions for the Liénard equation

ẍ+ f(x)ẋ+ g(x) = 0.

Such a problem has been widely investigated since the first results of Liénard [17], appeared in 1928 and
there is an enormous quantity of papers on this topic.

It is well known that Liénard equation is equivalent to the system
ẋ = y
ẏ = −f(x)y − g(x)

(1.1)
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in the phase plane, and to the system 
ẋ = y − F (x)
ẏ = −g(x)

(1.2)

in the Liénard plane, where F (x) =
 x
0 f(x)dx.

For this reason, the problem of the existence of periodic solutions is brought back to a problem of existence
of limit cycles for the previous systems, and in this paper we work in the environment of Liénard system (1.2).

Among the existence results until 1960, the classical theorems of Filippov [8], Levinson–Smith [16] and
Dragilev [5] may be considered as milestones, while in the last decades the number of results is dramatically
increasing.

All the results are based on the classical Poincaré–Bendixson theorem, and in order to fulfil the assump-
tions of this theorem, it is necessary to produce a winding trajectory large enough.

It is interesting to observe that the methods used to attack this problem are basically two.
We can call the first one the “method of energy”, because one may consider the Liénard equation as

perturbation of the Duffing equation

ẍ+ g(x) = 0

which plays the rôle of the energy.
Let us discuss in details this situation.

1.1. The method of energy

The Duffing equation is equivalent in both planes to the system
ẋ = y
ẏ = −g(x)

(1.3)

and it is well known that the level curves of the function

H(x, y) = 1
2y

2 +G(x)

where G(x) =
 x
0 g(x)dx, are its solutions.

Here we follow the elegant and concise description of Lefschetz [14, p. 266]. If we consider the level curve

1
2y

2 +G(x) = K (1.4)

in the dynamical interpretation as motion of a particle, the first term represents its kinetic energy and (1.4)
expresses the law of conservation of energy as applied to the particle.

For this reason, we may consider the level curves of the function H(x, y) as energy levels.
Coming back to the Liénard system (1.2), consider a generic point
S = (xS , yS). Keeping the dynamical interpretation, we can say that this point lies on the level of energy

1
2y

2
S +G(xS) = KS .

For sake of simplicity, we consider a generic point of the y-axis S = (0, yS), which lies on the level energy
1
2y

2
S = KS .
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