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In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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In the framework of variable exponent Sobolev spaces, we prove that the variational
eigenvalues defined by inf sup procedures of Rayleigh ratios for the Luxemburg
norms are all stable under uniform convergence of the exponents.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and main result

The differential equations and variational problems involving p(x)-growth conditions arise from nonlinear
elasticity theory and electrorheological fluids, and have been the target of various investigations, especially in
regularity theory and in nonlocal problems (see e.g. [1–3,10,16,32] and the references therein). Let Ω ⊂ RN ,
with N ≥ 2, be a bounded domain and let p : Ω̄ → R+ be a continuous function such that

1 < p− := inf
Ω
p ≤ p(x) ≤ sup

Ω
p =: p+ < N for all x ∈ Ω . (1.1)

We also assume that p is log-Hölder continuous, namely

|p(x)− p(y)| ≤ − L

log |x− y| (1.2)

for some L > 0 and for all x, y ∈ Ω , with 0 < |x− y| ≤ 1/2. From now on, we denote by

C :=

p ∈ C(Ω̄) : p satisfies (1.1) and (1.2)


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the set of admissible variable exponents. The goal of this paper is to study the stability of the (variational)
eigenvalues with respect to (uniform) variations of p(·) for the problem

− div

p(x)
 ∇uK(u)

p(x)−2 ∇u
K(u)


= λS(u)p(x)

 uk(u)
p(x)−2

u

k(u) , u ∈W
1,p(x)
0 (Ω), (1.3)

where we have set

K(u) := ∥∇u∥p(x), k(u) := ∥u∥p(x), S(u) :=


Ω

p(x)
 ∇uK(u)

p(x) dx
Ω

p(x)
 uk(u)

p(x) dx
.

Following the argument contained in [21, Section 3], it is possible to derive Eq. (1.3) as the Euler–Lagrange
equation corresponding to the minimization of the Rayleigh ratio

K(u)
k(u) =

∥∇u∥p(x)
∥u∥p(x)

, among all u ∈W 1,p(x)
0 (Ω) \ {0}, (1.4)

where ∥·∥p(x) denotes the Luxemburg norm of the variable exponent Lebesgue space Lp(x)(Ω) (see Section 2).
This minimization problem has been firstly introduced in [21] as an appropriate replacement for the
inhomogeneous minimization problem

Ω

|∇u|p(x)dx
Ω

|u|p(x)dx
, among all u ∈W 1,p(x)

0 (Ω) \ {0},

which was previously considered in [20] to define the first eigenvalue λ1 of the p(x)-Laplacian. In [20],
sufficient conditions for λ1 defined in this way to be zero or positive are provided. In particular, if p(·) has
a strict local minimum (or maximum) in Ω , then λ1 = 0. Arguing as in [21, Lemma A.1], it can be shown
that the functionals k and K are differentiable with

⟨K ′(u), v⟩ =


Ω

p(x)
 ∇uK(u)

p(x)−2 ∇u
K(u) · ∇v dx

Ω

p(x)
 ∇uK(u)

p(x) dx
for all u, v ∈W 1,p(x)

0 (Ω),

⟨k′(u), v⟩ =


Ω

p(x)
 uk(u)

p(x)−2
u

k(u)v dx
Ω

p(x)
 uk(u)

p(x) dx
for all u, v ∈W 1,p(x)

0 (Ω).

Therefore, all the critical values of the quotient (1.4) are eigenvalues of Eq. (1.3) and vice versa. The m-th
(variational) eigenvalue λ(m)

p(x) of (1.3) can be obtained as

λ
(m)
p(x) := inf

K∈W(m)
p(x)

sup
u∈K
∥∇u∥p(x),

whereW(m)
p(x) is the set of symmetric, compact subsets of {u ∈W 1,p(x)

0 (Ω) : ∥u∥p(x) = 1} such that i(K) ≥ m,
and i denotes the Krasnosel’skĭı genus (or, actually, any other index satisfying the properties listed in
Remark 1.4). In [21] existence and properties of the first eigenfunction were studied, while in [7] a numerical
method to compute the first eigenpair of (1.3) was obtained and the symmetry breaking phenomena with
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