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1. Introduction and main result

The differential equations and variational problems involving p(z)-growth conditions arise from nonlinear
elasticity theory and electrorheological fluids, and have been the target of various investigations, especially in
regularity theory and in nonlocal problems (see e.g. [1-3,10,16,32] and the references therein). Let £2 C RY,
with N > 2, be a bounded domain and let p : 2 — R* be a continuous function such that

l1<p_ = i%fpgp(x) <supp=:py <N forallze 0. (1.1)
Q
We also assume that p is log-Hoélder continuous, namely
L
plx)—ply)| < ———— 1.2
)~ P < (12)

for some L > 0 and for all z,y € 2, with 0 < |z — y| < 1/2. From now on, we denote by
¢ = {p € C(2) : p satisfies (1.1) and (1.2)}
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the set of admissible variable exponents. The goal of this paper is to study the stability of the (variational)
eigenvalues with respect to (uniform) variations of p(-) for the problem

u p(x)—2 u " p(z)—2 U
~a(o) 5| mg) SN0 g EWe@
where we have set
Vau p(z)
p(x) dzx
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Following the argument contained in [21, Section 3], it is possible to derive Eq. (1.3) as the Euler-Lagrange
equation corresponding to the minimization of the Rayleigh ratio
K@) _ [IVullp@)

o)
= , among all u € W, " (12)\ {0}, (1.4)
k(u) el 0

where |- ||,(z) denotes the Luxemburg norm of the variable exponent Lebesgue space LP®)(£2) (see Section 2).
This minimization problem has been firstly introduced in [21] as an appropriate replacement for the
inhomogeneous minimization problem

/ |VulP® da
0

/ |u|p(””)dx
2

which was previously considered in [20] to define the first eigenvalue A; of the p(z)-Laplacian. In [20],

, among all u € Wol’p(z)(()) \ {0},

sufficient conditions for A\; defined in this way to be zero or positive are provided. In particular, if p(-) has
a strict local minimum (or maximum) in 2, then A\; = 0. Arguing as in [21, Lemma A.1], it can be shown
that the functionals £ and K are differentiable with

Vu P92 vy
/p(x)’ —— - Vudz
(K'(u),v) = 22 K(v) ﬁf ()“) for all u,v € Wy (),
Vu [PV
p(x) | —— dx
f,7) 7
w P2
/p(:r) — vdx
(K (u),v) = 22 (u) p(f)(“) for all u,v € Wy (02).
u
/Q p(z) W) dx

Therefore, all the critical values of the quotient (1.4) are eigenvalues of Eq. (1.3) and vice versa. The m-th

(variational) eigenvalue )\ggc)) of (1.3) can be obtained as

AU = inf sup [V,
p(@) KeW}ﬂ’(’;)) ueK p()

where ngz';)) is the set of symmetric, compact subsets of {u € Wol’p(x)(Q) : [Jullpy = 1} such that i(K) > m,
and ¢ denotes the Krasnosel’skil genus (or, actually, any other index satisfying the properties listed in
Remark 1.4). In [21] existence and properties of the first eigenfunction were studied, while in [7] a numerical
method to compute the first eigenpair of (1.3) was obtained and the symmetry breaking phenomena with
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