Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Sections of stable harmonic convex functions

Liulan Li^a, Saminathan Ponnusamy^{b,*}

^a Department of Mathematics and Computational Science, Hengyang Normal University, Hengyang, Hunan 421008, People's Republic of China
^b Indian Statistical Institute (ISI), Chennai Centre, SETS (Society for Electronic Transactions and

Security), MGR Knowledge City, CIT Campus, Taramani, Chennai 600 113, India

ARTICLE INFO

Communicated by Enzo Mitidieri

MSC: primary 30C65 30C45 secondary 30C20 30C5531A05 31B0531C05Keywords: Stable harmonic convex and close-to-convex mappings Partial sum Univalent Convex Starlike and close-to-convex harmonic mappings Harmonic convolution

ABSTRACT

In this article, we consider the class \mathcal{SHC} of normalized stable harmonic convex mappings $f = h + \overline{g}$ in the unit disk and determine r such that every section of fis close-to-convex or convex in the disk |z| < r. Also, we show that the convolution $f * f \in \mathcal{SHC}$ whenever $f \in \mathcal{SHC}$. In addition, we prove that the harmonic convolution $f_1 * f_2$ is stable harmonic close-to-convex whenever $f_1 \in \mathcal{SHC}$ and f_2 is either a slanted half-plane mapping or an asymmetric vertical strip mapping or a mapping in the family $\mathcal{P}_H^0(\alpha)$ which is contained in the family of harmonic close-to-convex functions in |z| < 1.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For r > 0, let $\mathbb{D}_r := \{z \in \mathbb{C} : |z| < r\}$ and $\mathbb{D} := \mathbb{D}_1$, the open unit disk. Let \mathcal{H} consist of all complex-valued harmonic functions $f = h + \overline{g}$ defined on \mathbb{D} , where h and g are analytic on \mathbb{D} such that h(0) = 0 = h'(0) - 1 and g(0) = 0. Clearly, each $f = h + \overline{g} \in \mathcal{H}$ has the form

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=1}^{\infty} b_n z^n$. (1)

* Corresponding author. Tel.: +91 44 2574615; fax: +91 44 22574602.

E-mail addresses: lanlimail2012@sina.cn (L. Li), samy@iitm.ac.in, samy@isichennai.res.in (S. Ponnusamy).

http://dx.doi.org/10.1016/j.na.2014.06.005 $0362\text{-}546\mathrm{X}/\odot$ 2014 Elsevier Ltd. All rights reserved.

A necessary and sufficient condition for $f = h + \overline{g} \in \mathcal{H}$ to be sense-preserving in \mathbb{D} is that the Jacobian $J_f(z)$ is positive in \mathbb{D} , where $J_f(z) = |h'(z)|^2 - |g'(z)|^2$. That is, there exists an analytic function $\omega(z) = g'(z)/h'(z)$, called the dilatation of f, such that $|\omega(z)| < 1$ for $z \in \mathbb{D}$.

Also, let $\mathcal{H}_0 = \{f = h + \overline{g} \in \mathcal{H} : g'(0) = 0\}$, and let \mathcal{S}_H denote the subclass of \mathcal{H} that are sense-preserving and univalent in \mathbb{D} , and further set $\mathcal{S}_H^0 = \mathcal{S}_H \cap \mathcal{H}_0$. Recall that both \mathcal{S}_H and \mathcal{S}_H^0 coincide with the class \mathcal{S} of the classical normalized analytic univalent mappings, whenever the co-analytic part g of $f = h + \overline{g}$ is identically zero. Important geometric subclasses of \mathcal{S}_H and \mathcal{S}_H^0 such as convex, close-to-convex, starlike (with respect to the origin) and typically real harmonic functions are discussed by Clunie and Sheil-Small [1] and these classes were investigated later by a number of authors. For many interesting results and expositions on planar harmonic univalent mappings, we refer the book of Duren [2] and also the articles [3,4]. However, the class \mathcal{S}_H^0 is the central object in the study of harmonic univalent mappings.

Lemma A ([1]). If a harmonic mapping $f = h + \overline{g}$ on \mathbb{D} satisfies |g'(0)| < |h'(0)| and the function $F_{\lambda} = h + \lambda g$ is close-to-convex for all $|\lambda| = 1$, then f is close-to-convex and univalent in \mathbb{D} .

Lemma A due to Clunie and Sheil-Small [1] motivates one to introduce and study stable harmonic mappings which we now recall (see [5]): A sense-preserving harmonic mapping $f = h + \overline{g} \in \mathcal{H}_0$ is stable harmonic convex (resp. stable harmonic close-to-convex) in \mathbb{D} if all the mappings $f_{\lambda} = h + \lambda g$ are convex (resp. close-to-convex) in \mathbb{D} , where $|\lambda| = 1$. The set of all stable harmonic convex (resp. stable harmonic closeto-convex) mappings is denoted by SHC (resp. SHCC). For example, the following lemma is easy to obtain.

Lemma B ([5, Proposition 8.2]). Suppose that $f = h + \overline{g} \in SHC$, where h and g are in the form (1). Then for any $n \ge 2$,

1. $|a_n + \lambda b_n| \le |a_n| + |b_n| \le 1$, where $|\lambda| = 1$; 2. $|a_n| \le 1$.

All the results are sharp, with $f(z) = \frac{z}{1-z}$ being extremal.

For $f = h + \overline{g} \in \mathcal{H}_0$, where h and g are in the form (1), we define the sections/partial sums of h, g and f as follows:

$$s_p(h)(z) = \sum_{k=1}^p a_k z^k, \qquad s_q(g)(z) = \sum_{k=2}^q b_k z^k, \qquad s_{p,q}(f) = s_p(h) + \overline{s_q(g)},$$

where $a_1 = 1, p \ge 1$ and $q \ge 2$. One of the classical results of Szegö [6] (see also [7, Theorem 8.5]) shows that if $h \in S$ is defined by (1), then the *n*th partial sums $s_n(h)$ is univalent in |z| < 1/4 and the number 1/4 cannot be replaced by a larger one. Although every section of the Koebe function k(z) is univalent in the disk $|z| < 1 - 3n^{-1} \log n$ for $n \ge 5$ and that the constant 3 cannot be replaced by a smaller number, Bshouty and Hengartner [8, p. 408] have observed that the Koebe function is not extremal for the problem of determining the radius of univalency of the partial sums of $h \in S$. Thus, the largest radius of univalence r_n of $s_n(h)$ ($h \in S$) is not yet known although the conjectured value is $1 - 3n^{-1} \log n$ for $n \ge 5$. The reader is referred to [9–13] for many interesting results on sections of various subclasses of S.

Lemma C ([11,6]). Let $h \in S$ be convex (resp. starlike, close-to-convex) in \mathbb{D} . Then $s_n(h)$ is convex (resp. starlike, close-to-convex) in |z| < 1/4 for all $n \ge 2$. Moreover, $s_n(h)$ is convex (resp. starlike, close-to-convex) in $|z| < 1-3n^{-1}\log n$ for $n \ge 5$.

In fact, Lemma C is a consequence of a convolution theorem due to Ruscheweyh and Sheil-Small [14] and the fact that the section $s_n(h)$ of h(z) = z/(1-z) is convex in the disk $|z| < 1 - 3n^{-1} \log n$ for $n \ge 5$. Download English Version:

https://daneshyari.com/en/article/839510

Download Persian Version:

https://daneshyari.com/article/839510

Daneshyari.com