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ARTICLE INFO ABSTRACT

In this article, we consider the class SHC of normalized stable harmonic convex
Communicated by Enzo Mitidieri mappings f = h + g in the unit disk and determine r such that every section of f
is close-to-convex or convex in the disk | z |< r. Also, we show that the convolution

i/r[fn?;ry 30065 f+f € SHC whenever f € SHC. In addition, we prove that the harmonic convolution
30045 f1 * fa2 is stable harmonic close-to-convex whenever f; € SHC and f2 is either a
secondary 30020 slanted half-plane mapping or an asymmetric vertical strip mapping or a mapping
30C55 in the family PY (o) which is contained in the family of harmonic close-to-convex
31A05 functions in | z |< 1.
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1. Introduction

For r > 0,1let D, := {z € C: |z| < r} and D := Dy, the open unit disk. Let H consist of all complex-valued
harmonic functions f = h + g defined on D, where h and g are analytic on D such that A(0) =0 = h'(0) — 1
and ¢g(0) = 0. Clearly, each f = h + g € H has the form

h(z)=z+ Z anz" and g(z) = Z bn2". (1)

n=1
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A necessary and sufficient condition for f = h+g € H to be sense-preserving in D is that the Jacobian J;(z)
is positive in D, where J¢(z) = |h'(2)|*—|¢(2)|?. That is, there exists an analytic function w(z) = ¢'(2)/h(2),
called the dilatation of f, such that |w(z)| < 1 for z € D.

Also, let Ho = {f = h+7g € H: ¢’(0) = 0}, and let Sy denote the subclass of H that are sense-preserving
and univalent in D, and further set SY = Sy N Ho. Recall that both Sy and SY coincide with the class
S of the classical normalized analytic univalent mappings, whenever the co-analytic part g of f = h + 7 is
identically zero. Important geometric subclasses of Sy and 8% such as convex, close-to-convex, starlike (with
respect to the origin) and typically real harmonic functions are discussed by Clunie and Sheil-Small [1] and
these classes were investigated later by a number of authors. For many interesting results and expositions
on planar harmonic univalent mappings, we refer the book of Duren [2] and also the articles [3,4]. However,
the class 8% is the central object in the study of harmonic univalent mappings.

Lemma A (/1)). If a harmonic mapping f = h+7g on D satisfies |¢’(0)| < |h'(0)| and the function Fy = h+Ag
is close-to-convex for all |\| =1, then f is close-to-convex and univalent in D.

Lemma A due to Clunie and Sheil-Small [1] motivates one to introduce and study stable harmonic
mappings which we now recall (see [5]): A sense-preserving harmonic mapping f = h +7 € Hy is stable
harmonic convex (resp. stable harmonic close-to-convex) in D if all the mappings fy = h + Ag are convex
(resp. close-to-convex) in I, where |A| = 1. The set of all stable harmonic convex (resp. stable harmonic close-
to-convex) mappings is denoted by SHC (resp. SHCC). For example, the following lemma is easy to obtain.

Lemma B (/5, Proposition 8.2]). Suppose that f = h+¢G € SHC, where h and g are in the form (1). Then
for any n > 2,

L. |an + Aby| < lan| + |bn] < 1, where [N = 1;
2. lan| < 1.

All the results are sharp, with f(z) = 1% being extremal.

For f = h+7g € Ho, where h and g are in the form (1), we define the sections/partial sums of h, g and f
as follows:

sp(h)(2) = Z az", sq(9)(2) = Z biz", sp,q(f) = sp(h) + s4(9),
k=1 k=2

where a1 = 1,p > 1 and ¢ > 2. One of the classical results of Szego [6] (see also [7, Theorem 8.5]) shows
that if h € S is defined by (1), then the nth partial sums s,(h) is univalent in |z| < 1/4 and the number
1/4 cannot be replaced by a larger one. Although every section of the Koebe function k(z) is univalent in
the disk |z| < 1 —3n"tlogn for n > 5 and that the constant 3 cannot be replaced by a smaller number,
Bshouty and Hengartner [8, p. 408] have observed that the Koebe function is not extremal for the problem
of determining the radius of univalency of the partial sums of h € S§. Thus, the largest radius of univalence
7y, of s,(h) (h € S) is not yet known although the conjectured value is 1 — 3n~1logn for n > 5. The reader
is referred to [9-13] for many interesting results on sections of various subclasses of S.

Lemma C (/11,6]). Let h € S be convex (resp. starlike, close-to-convex) in D. Then s, (h) is convezx (resp.
starlike, close-to-convex) in |z| < 1/4 for alln > 2. Moreover, s, (h) is convex (resp. starlike, close-to-convex)
in |z| <1—3n"tlogn for n >5.

In fact, Lemma C is a consequence of a convolution theorem due to Ruscheweyh and Sheil-Small [14] and
the fact that the section s, (k) of h(z) = z/(1 — 2) is convex in the disk |2| < 1 — 3n~llogn for n > 5.
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