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In this paper, we study the zero dielectric constant limit to the full Magnet-Hydro-
Dynamics system (or more precisely the Maxwell–Navier–Stokes system). For well
prepared initial data, the convergences of solutions of the full MHD system towards
to the solutions of the classical 2D parabolic MHD system are justified rigorously
by adapting the elaborate energy method as the dielectric constant tends to zero.
Furthermore, the corresponding convergence rates are also obtained.

© 2015 Published by Elsevier Ltd.

1. Introduction

The main objective of this paper is to study the zero dielectric constant limit of the full Magnet-
Hydro-Dynamics system (the Maxwell–Navier–Stokes system) which is a couple system consisting of the
Navier–Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism. The coupling comes
from the Lorentz force in the fluid equation and the electric current in the Maxwell equations. The (scaled)
Maxwell–Navier–Stokes system in two-dimensional torus has the following form [16,7]

∂tu
ϵ + (uϵ · ∇)uϵ − µ∆uϵ +∇pϵ = jϵ ×Bϵ, in T2 × (0, T ), (1.1)

ϵ∂tE
ϵ − curlBϵ = −jϵ, in T2 × (0, T ), (1.2)

∂tB
ϵ + curlEϵ = 0, in T2 × (0, T ), (1.3)

divuϵ = divBϵ = 0, in T2 × (0, T ), (1.4)
jϵ = σ(Eϵ + uϵ ×Bϵ), in T2 × (0, T ), (1.5)

E-mail address: yangjianwei@ncwu.edu.cn.

http://dx.doi.org/10.1016/j.na.2015.03.011
0362-546X/© 2015 Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.na.2015.03.011
http://www.sciencedirect.com
http://www.elsevier.com/locate/na
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2015.03.011&domain=pdf
mailto:yangjianwei@ncwu.edu.cn
http://dx.doi.org/10.1016/j.na.2015.03.011


228 J. Yang / Nonlinear Analysis 120 (2015) 227–235

with the following initial condition

uϵ(t = 0) = uϵ0, Eϵ(t = 0) = Eϵ0, Bϵ(t = 0) = Bϵ0. (1.6)

Here, uϵ is the velocity of the fluid, Eϵ is the electric field, Bϵ is the magnetic field. jϵ is the electric current
which is given by Ohm’s law. The force term jϵ×Bϵ in the Navier–Stokes equations comes from Lorentz force
under a quasi-neutrality assumption of the net charge carried by the fluid. pϵ is the scalar pressure which
can be recovered from uϵ and jϵ×Bϵ via an explicit Calderon–Zygmund type operator [2], µ is the viscosity,
σ is the electric conductivity and ϵ is the dielectric constant. For simplicity, we will take µ = σ = 1.
Eq. (1.1) is the Navier–Stokes equation for incompressible flows with a Lorentz force term. Eq. (1.2)
is the Ampère–Maxwell equation for an electric field Eϵ and Eq. (1.3) is the Faraday’s law. Eq. (1.4) is
the divergence free condition for uϵ and Bϵ. Since the divergence-free condition of the magnetic field is
conserved, divBϵ = 0 in (1.4) is not necessary in general if we assume the divergence-free condition for the
initial data of the magnetic field in T2. Eq. (1.5) is the Ohm’s law which states that the electric current
is proportional to the electric field measured in a frame moving with the local velocity of the conductor.
This explains the extra term uϵ ×Bϵ. For a detailed physical introduction to the Magnet-Hydro-Dynamics
system, we refer to Imai [8], Biskamp [1] and Davidson [4].

Note that in the two-dimensional case, the vector functions uϵ, Eϵ and Bϵ are defined on T2 and take
their values in R3. This justifies the use of the cross product uϵ ×Bϵ and jϵ ×Bϵ. In this case, the operator
∇ is given

∇ = (∂x1 , ∂x2 , 0)T .

Thus

divuϵ = ∂u
ϵ
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The Maxwell–Navier–Stokes system (1.1)–(1.5) has been studied by many authors. Recently, for initial
data (uϵ0, Eϵ0, Bϵ0) ∈ L2(R2) × Hs(R2) × Hs(R2) with s > 0, Masmoudi in [16] proved the existence and
uniqueness of global strong solutions. For the initial data (uϵ0, Eϵ0, Bϵ0) ∈ Ḃ

1
2
2,1(R3) × H 1

2 (R3) × H 1
2 (R3) in

three-dimensional case and (uϵ0, Eϵ0, Bϵ0) ∈ Ḃ0
2,1(R3)×L2

log(R3)×H 1
2 (R3) in the bidimensional case, Ibrahim

and Keraani in [6] built up the strong solutions. More recently, Ibrahim and Yoneda in [7] constructed
local-in-time solution for non-decaying initial data on the torus T3 and showed the loss of smoothness of
solutions. However, for the initial data lying in L2(R2), the global finite energy weak solution (Leray-type
solution) to system (1.1)–(1.5) remains an interesting open problem in both dimensions d = 2, 3.

The purpose of this paper is to investigate the singular limit of the problem (1.1)–(1.5) in the so-called
zero dielectric regime. Formally, taking the dielectric constant ϵ = 0 in (1.2), we can have that curlB0 = j0.
Thanks to (1.5), we can replace the electric field E0 by

E0 = curlB0 − u0 ×B0 (1.7)

in (1.1) and (1.3), and finally obtain that

∂tu
0 + (u0 · ∇)u0 −∆u0 +∇p0 = curlB0 ×B0, in T2 × (0, T ), (1.8)

∂tB
0 − curl curlB0 + curl (u0 ×B0) = 0, in T2 × (0, T ), (1.9)

divu0 = divB0 = 0, in T2 × (0, T ). (1.10)
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