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Partial regularity for solutions of quasilinear parabolic systems with non smooth
in time principal matrix in the interior of space–time cylinder Q was proved in
Arkhipova et al. (2014). In this paper we extend the results up to the parabolic
boundary ∂pQ. The coefficients of the system are assumed to be only bounded and
measurable in the time variable. To prove the result, we apply the method of mod-
ified boundary A(t)-caloric approximation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we continue the study of partial regularity of weak solutions to quasilinear parabolic systems
started in [2] by proving the partial regularity up to the parabolic boundary. We consider systems

vt − div(a(z, v)∇v) = g − div G; z ∈ Q, (1)

where z = (x, t) ∈ Q = Ω × (−T, 0), Ω is a smooth bounded domain in Rn, n ≥ 2 and T > 0 is an
arbitrary fixed number. By vt we denote the time derivative of a function v : Q → RN , N ≥ 1, and
by ∇v =


∂vi

∂xα

i=1,...,N

α=1,...,n
its gradient with respect to the space variables. We assume that v satisfies the

Cauchy–Dirichlet condition on the parabolic boundary ∂pQ

v|∂pQ = u0, (2)

where ∂pQ = (∂Ω × (−T, 0)) ∪

Ω × {−T}


and u0 is a fixed function. The assumptions on the matrix

a(z, v), the functions u0, g and G will be described later.
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In [2] we considered system (1) and relaxed known conditions on the matrix a(z, η) guaranteeing partial
regularity of its weak solutions. Namely, we admitted the coefficients with integral continuity (VMO) with
respect to the space variables and only bounded and measurable in the time variable t. Here we extend this
result up to the parabolic boundary ∂pQ for weak solutions of problem (1), (2).

Solvability and regularity of solutions to various classes of nonlinear scalar parabolic equations and linear
systems of equations with principal matrix non smooth in time were studied earlier (see [11,12,7] and ref-
erences therein). Here we continue to develop the A-caloric approximation method (see [8,9,3,4]) and prove
so-called A(t)-caloric approximation lemma for parabolic problems under the Dirichlet boundary condition
on the flat part of a model parabolic cylinder (Lemma 5 below).

Note that even if the coefficients of a quasilinear system depend on η only and are real analytic on a
neighborhood of the set where solution v takes its values, for dimensions n ≥ 3, N ≥ 3 the system (1)
can have a solution which develops a singularity in the interior of Q (see [16,17]). At the same time, the
counter-example [10] shows that there exists a weak solution of an elliptic quasilinear system under trivial
Dirichlet boundary condition which admits singular points at the flat part of the boundary. Thus, even for
very smooth coefficients the partial regularity of solutions to parabolic systems is the limit we can arrive to.

In what follows we assume that the coefficients a(z, η) =

aαβij (z, η)

α,β=1,...,n

i,j=1,...,N
are Carathéodory functions

and satisfy the following conditions:

H1. There are positive constants λ,Λ such that

(a(z, η)ξ, ξ) = aαβij (z, η)ξiαξ
j
β ≥ λ|ξ|

2, ξ ∈ RnN ,
|(a(z, η)p, q)| ≤ Λ|p||q|, p, q ∈ RnN ,

for almost all z ∈ Q and all η ∈ RN .
H2. For almost all z ∈ Q and all η, ν ∈ RN it holds

|a(z, η)− a(z, ν)| ≤ ω(|η − ν|2),

where ω(s) is a non decreasing, bounded and concave function on [0,∞) with lims→0+ ω(s) = ω(0) = 0.
H3. The coefficients aαβij (., t, η) belong to VMO(Ω) for almost all t ∈ (−T, 0) and every η ∈ RN , i, j ≤
N, α, β ≤ n, and

q2(r) := sup
z0=(x0,t0)∈Q∪∂pQ

sup
ρ∈(0,r),η∈RN

−

Λρ(t0)


−

Ωρ(x0)

|a(y, t, η)− aρ,x0(t, η)|2dy

dt→ 0

for r → 0+.

Here and below

Λρ(t0) = (t0 − ρ2, t0 + ρ2) ∩ (−T, 0), Bρ(x0) = {x ∈ Rn; |x− x0| < ρ}, Ωρ(x0) = Bρ(x0) ∩ Ω ,

aρ,x0(t, η) = −

Ωρ(x0)

a(y, t, η) dy.

Further we reduce the non homogeneous boundary and initial conditions to the homogeneous ones. Assume
that the function u0 in (2) can be extended from ∂pQ to Q so that

u0 ∈W 1,2(Q).
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