Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Phase plane analysis for radial solutions to supercritical quasilinear elliptic equations in a ball

Isabel Flores^a, Matteo Franca^{b,*}

 ^a Departamento de Matemática, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
 ^b Dipartimento di Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche 1, 60131 Ancona, Italy

ARTICLE INFO

Article history: Received 29 November 2014 Accepted 29 April 2015 Communicated by Enzo Mitidieri

MSC: primary 35J92 secondary 35J61 35B09 34B08

Keywords: Supercritical elliptic problems Solution branches Infinitely many turning points Invariant manifold Positive solutions Nodal solutions

ABSTRACT

We consider the following problem

$$\begin{cases} \Delta_p u + \lambda u + f(u, r) = 0\\ u > 0 \quad \text{in } B, \quad \text{and} \quad u = 0 \quad \text{on } \partial B \end{cases}$$
(0.1)

where B is the unitary ball in \mathbb{R}^n . Merle and Peletier considered the classical Laplace case p = 2, and proved the existence of a unique value λ_0^* for which a radial singular positive solution exists, assuming $f(u,r) = u^{q-1}$ and $q > 2^* := \frac{2n}{n-2}$. Then Dolbeault and Flores proved that, if $q > 2^*$ but q is smaller than the Joseph–Lundgren exponent σ^* , then there is an unbounded sequence of radial positive classical solutions for (0.1), which accumulate at $\lambda = \lambda_0^*$, again for p = 2.

We extend both Merle–Peletier and Dolbeault–Flores results to the *p*-Laplace setting with the technical restriction 1 , and to more general nonlinearities <math>f, which may have more complicated dependence on u and may be spatially non-homogeneous. Then we reproduce the results also for similar bifurcation problems where the linear term λu is replaced by a superlinear and subcritical term of the form $\lambda r^{\eta} u |u|^{Q-2}$. Our analysis relies on a generalized Fowler transformation and profits of invariant manifold theory, and it allows to discuss radial nodal solutions too.

@ 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study radial solutions for equations of the following form:

$$\Delta u + \lambda u + f(u, r) = 0 \qquad u(x) = 0 \quad \text{for } |x| = 1$$
(1.1)

* Corresponding author.

E-mail addresses: isabel.flores@usm.cl (I. Flores), franca@dipmat.univpm.it (M. Franca).

 $\label{eq:http://dx.doi.org/10.1016/j.na.2015.04.015} 0362\text{-}546 X/ @ 2015 Elsevier Ltd. All rights reserved.$

where $r = |x|, x \in \mathbb{R}^n$. Abusing the notation we denote by u(r) the radial solution u(x) where |x| = r, so in fact we discuss the following singular O.D.E.

$$u'' + \frac{n-1}{r}u' + \lambda u + f(u,r) = 0 \qquad u(1) = 0.$$
(1.2)

Our results apply also to the equation

$$u'' + \frac{n-1}{r}u' + \lambda r^{\eta}u|u|^{Q-2} + f(u,r) = 0; \qquad u(1) = 0,$$
(1.3)

and to the generalization of (1.2) and (1.3) to the *p*-Laplace case for 1 , see (1.6), (1.7) in the introduction. We assume <math>f odd in u, positive for u > 0, superlinear for u small and supercritical for u large. We say that a solution u(r) is regular if it is well defined for r = 0 and u(0) = d > 0, that it is singular if $\lim_{r\to 0} u(r) = +\infty$.

We denote by $2_* = 2\frac{n-1}{n-2}$ the Serrin critical exponent (related to the continuity of the trace operator), and by $2^* = \frac{2n}{n-2}$ the Sobolev critical exponent. We need also a further critical value, i.e.

$$\sigma^* = \begin{cases} 2\frac{n - 2\sqrt{n-1} - 2}{n - 2\sqrt{n-1} - 4} & \text{if } n > 10\\ \sigma^* = \infty & \text{if } n \le 10. \end{cases}$$
(1.4)

The number σ^* is the so called Joseph–Lundgren exponent, introduced in [18] and is related to the existence of an ordering for regular solutions, and therefore plays a key role in associated parabolic problems, see e.g. [25,14]: its meaning will be further clarified later on.

Let us focus first on positive solutions of (1.1). The interest in these problems started from (1.1) and $f(u) = u^{q-1}$; in this case all positive solutions have to be radial, see [13,26] and this is the main motivation to reduce to (1.2): roughly speaking this is a general fact for f which are decreasing in r or r-independent. Let \wedge_1 be the first eigenvalue of $-\Delta$ in the unit ball with Dirichlet data. Multiplying the equation by the first eigenfunction and integrating by parts, it can be easily proved that (1.1) admits no positive solution for $\lambda \geq \wedge_1$ and for any q > 2 (whenever the domain is bounded, even with no symmetries). For $2 < q < 2^*$ there is at most one positive solution of (1.2) when $\lambda < \wedge_1$. When $q = 2^*$, Brezis and Nirenberg in [3] showed that (1.2) is solvable for $\bar{\lambda} < \lambda < \Lambda_1$, where $\bar{\lambda} = 0$ for $n \ge 4$ and $\bar{\lambda} = \Lambda_1/4$ for n = 3. So, in terms of standard bifurcation theory we can say that the set of pairs $(\lambda, u(0))$, where u is positive and solves (1.2), is a curve C that stems from $(\wedge_1, 0)$: if $2 < q \leq 2^*$ the curve goes left without turning points, and it blows up as $\lambda \setminus \overline{\lambda}$ if $q = 2^*$. The situation changes drastically for $q > 2^*$. In this case, from the Pohozaev identity it follows that there are no positive solutions for $\lambda \leq 0$. Moreover Merle and Peletier in [20] proved that there is a unique value $\lambda = \lambda_0^{\alpha}$ such that (1.2) admits a positive singular solution. In [4] using numerical computations Budd and Norbury showed that the solutions curve turns right and oscillates infinitely many times across the curve $\lambda = \lambda_0^*$. Such a result was proved rigorously for $q < \sigma^*$ using phase plane analysis. From their argument it can be easily inferred that for $q \ge \sigma^*$ the curve \mathcal{C} crosses at most finitely many times the curve $\lambda = \lambda_0^*$. The results obtained in [7] for positive solutions have been recently reproved by Guo and Wei in [15] using PDE techniques and evaluating the Morse index of the solutions. In fact they also showed that for $n \geq 12$ and q large enough (larger than a further critical exponent which is not explicitly computed, but equal or larger than σ^*), \mathcal{C} goes left from $(\wedge_1, 0)$ without turning point and it blows up as $\lambda \setminus \lambda_0^*$.

Our main purpose is to find assumptions on f which are sufficient to reproduce the pattern described in [7] in the $2^* < q < \sigma^*$ case. Namely we prove the existence of the following patterns for (1.2) and (1.3) as λ varies.

S For any $k \in \mathbb{N}$ there is λ_k^* such that (1.2) (or (1.3)) admits a unique singular solution $u(\downarrow, r)$ with exactly k (non degenerate) zeros for $r \in (0, 1)$. In particular for $\lambda = \lambda_0^*$, $u(\downarrow, r)$ is a positive solution of (1.2) (or (1.3)).

Download English Version:

https://daneshyari.com/en/article/839539

Download Persian Version:

https://daneshyari.com/article/839539

Daneshyari.com