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We consider the following problem
∆pu+ λu+ f(u, r) = 0
u > 0 in B, and u = 0 on ∂B

(0.1)

where B is the unitary ball in Rn. Merle and Peletier considered the classical Laplace
case p = 2, and proved the existence of a unique value λ∗0 for which a radial singular
positive solution exists, assuming f(u, r) = uq−1 and q > 2∗ := 2n

n−2 . Then Dol-
beault and Flores proved that, if q > 2∗ but q is smaller than the Joseph–Lundgren
exponent σ∗, then there is an unbounded sequence of radial positive classical solu-
tions for (0.1), which accumulate at λ = λ∗0, again for p = 2.

We extend both Merle–Peletier and Dolbeault–Flores results to the p-Laplace
setting with the technical restriction 1 < p ≤ 2, and to more general nonlinearities
f , which may have more complicated dependence on u and may be spatially non-
homogeneous. Then we reproduce the results also for similar bifurcation problems
where the linear term λu is replaced by a superlinear and subcritical term of the
form λrηu|u|Q−2. Our analysis relies on a generalized Fowler transformation and
profits of invariant manifold theory, and it allows to discuss radial nodal solutions
too.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study radial solutions for equations of the following form:

∆u+ λu+ f(u, r) = 0 u(x) = 0 for |x| = 1 (1.1)
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where r = |x|, x ∈ Rn. Abusing the notation we denote by u(r) the radial solution u(x) where |x| = r, so in
fact we discuss the following singular O.D.E.

u′′ + n− 1
r
u′ + λu+ f(u, r) = 0 u(1) = 0. (1.2)

Our results apply also to the equation

u′′ + n− 1
r
u′ + λrηu|u|Q−2 + f(u, r) = 0; u(1) = 0, (1.3)

and to the generalization of (1.2) and (1.3) to the p-Laplace case for 1 < p ≤ 2, see (1.6), (1.7) in the
introduction. We assume f odd in u, positive for u > 0, superlinear for u small and supercritical for u large.
We say that a solution u(r) is regular if it is well defined for r = 0 and u(0) = d > 0, that it is singular if
limr→0 u(r) = +∞.

We denote by 2∗ = 2n−1
n−2 the Serrin critical exponent (related to the continuity of the trace operator),

and by 2∗ = 2n
n−2 the Sobolev critical exponent. We need also a further critical value, i.e.

σ∗ =

2n− 2
√
n− 1− 2

n− 2
√
n− 1− 4

if n > 10

σ∗ =∞ if n ≤ 10.
(1.4)

The number σ∗ is the so called Joseph–Lundgren exponent, introduced in [18] and is related to the existence
of an ordering for regular solutions, and therefore plays a key role in associated parabolic problems, see
e.g. [25,14]: its meaning will be further clarified later on.

Let us focus first on positive solutions of (1.1). The interest in these problems started from (1.1) and
f(u) = uq−1; in this case all positive solutions have to be radial, see [13,26] and this is the main motivation
to reduce to (1.2): roughly speaking this is a general fact for f which are decreasing in r or r-independent.
Let ∧1 be the first eigenvalue of −∆ in the unit ball with Dirichlet data. Multiplying the equation by the
first eigenfunction and integrating by parts, it can be easily proved that (1.1) admits no positive solution for
λ ≥ ∧1 and for any q > 2 (whenever the domain is bounded, even with no symmetries). For 2 < q < 2∗ there
is at most one positive solution of (1.2) when λ < ∧1. When q = 2∗, Brezis and Nirenberg in [3] showed that
(1.2) is solvable for λ̄ < λ < ∧1, where λ̄ = 0 for n ≥ 4 and λ̄ = ∧1 /4 for n = 3. So, in terms of standard
bifurcation theory we can say that the set of pairs (λ, u(0)), where u is positive and solves (1.2), is a curve C
that stems from (∧1, 0): if 2 < q ≤ 2∗ the curve goes left without turning points, and it blows up as λ↘ λ̄
if q = 2∗. The situation changes drastically for q > 2∗. In this case, from the Pohozaev identity it follows
that there are no positive solutions for λ ≤ 0. Moreover Merle and Peletier in [20] proved that there is a
unique value λ = λ∗0 such that (1.2) admits a positive singular solution. In [4] using numerical computations
Budd and Norbury showed that the solutions curve turns right and oscillates infinitely many times across
the curve λ = λ∗0. Such a result was proved rigorously for q < σ∗ using phase plane analysis. From their
argument it can be easily inferred that for q ≥ σ∗ the curve C crosses at most finitely many times the curve
λ = λ∗0. The results obtained in [7] for positive solutions have been recently reproved by Guo and Wei in [15]
using PDE techniques and evaluating the Morse index of the solutions. In fact they also showed that for
n ≥ 12 and q large enough (larger than a further critical exponent which is not explicitly computed, but
equal or larger than σ∗), C goes left from (∧1, 0) without turning point and it blows up as λ↘ λ∗0.

Our main purpose is to find assumptions on f which are sufficient to reproduce the pattern described
in [7] in the 2∗ < q < σ∗ case. Namely we prove the existence of the following patterns for (1.2) and (1.3)
as λ varies.

S For any k ∈ N there is λ∗k such that (1.2) (or (1.3)) admits a unique singular solution u(↓, r) with exactly
k (non degenerate) zeros for r ∈ (0, 1). In particular for λ = λ∗0, u(↓, r) is a positive solution of (1.2) (or
(1.3)).
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