Phase plane analysis for radial solutions to supercritical quasilinear elliptic equations in a ball

Isabel Flores ${ }^{\mathrm{a}}$, Matteo Franca ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Departamento de Matemática, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
${ }^{\text {b }}$ Dipartimento di Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche 1, 60131 Ancona, Italy

A R T I C L E I N F O

Article history:

Received 29 November 2014
Accepted 29 April 2015
Communicated by Enzo Mitidieri

$M S C$:

primary 35 J 92
secondary 35J61
35B09
34B08
Keywords:
Supercritical elliptic problems Solution branches
Infinitely many turning points
Invariant manifold
Positive solutions
Nodal solutions

A B S T R A C T

We consider the following problem

$$
\left\{\begin{array}{l}
\Delta_{p} u+\lambda u+f(u, r)=0 \tag{0.1}\\
u>0 \quad \text { in } B, \quad \text { and } \quad u=0 \quad \text { on } \partial B
\end{array}\right.
$$

where B is the unitary ball in \mathbb{R}^{n}. Merle and Peletier considered the classical Laplace case $p=2$, and proved the existence of a unique value λ_{0}^{*} for which a radial singular positive solution exists, assuming $f(u, r)=u^{q-1}$ and $q>2^{*}:=\frac{2 n}{n-2}$. Then Dolbeault and Flores proved that, if $q>2^{*}$ but q is smaller than the Joseph-Lundgren exponent σ^{*}, then there is an unbounded sequence of radial positive classical solutions for (0.1), which accumulate at $\lambda=\lambda_{0}^{*}$, again for $p=2$.

We extend both Merle-Peletier and Dolbeault-Flores results to the p-Laplace setting with the technical restriction $1<p \leq 2$, and to more general nonlinearities f, which may have more complicated dependence on u and may be spatially nonhomogeneous. Then we reproduce the results also for similar bifurcation problems where the linear term λu is replaced by a superlinear and subcritical term of the form $\lambda r^{\eta} u|u|^{Q-2}$. Our analysis relies on a generalized Fowler transformation and profits of invariant manifold theory, and it allows to discuss radial nodal solutions too.
© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study radial solutions for equations of the following form:

$$
\begin{equation*}
\Delta u+\lambda u+f(u, r)=0 \quad u(x)=0 \quad \text { for }|x|=1 \tag{1.1}
\end{equation*}
$$

[^0]where $r=|x|, x \in \mathbb{R}^{n}$. Abusing the notation we denote by $u(r)$ the radial solution $u(x)$ where $|x|=r$, so in fact we discuss the following singular O.D.E.
\[

$$
\begin{equation*}
u^{\prime \prime}+\frac{n-1}{r} u^{\prime}+\lambda u+f(u, r)=0 \quad u(1)=0 \tag{1.2}
\end{equation*}
$$

\]

Our results apply also to the equation

$$
\begin{equation*}
u^{\prime \prime}+\frac{n-1}{r} u^{\prime}+\lambda r^{\eta} u|u|^{Q-2}+f(u, r)=0 ; \quad u(1)=0 \tag{1.3}
\end{equation*}
$$

and to the generalization of (1.2) and (1.3) to the p-Laplace case for $1<p \leq 2$, see (1.6), (1.7) in the introduction. We assume f odd in u, positive for $u>0$, superlinear for u small and supercritical for u large. We say that a solution $u(r)$ is regular if it is well defined for $r=0$ and $u(0)=d>0$, that it is singular if $\lim _{r \rightarrow 0} u(r)=+\infty$.

We denote by $2_{*}=2 \frac{n-1}{n-2}$ the Serrin critical exponent (related to the continuity of the trace operator), and by $2^{*}=\frac{2 n}{n-2}$ the Sobolev critical exponent. We need also a further critical value, i.e.

$$
\sigma^{*}= \begin{cases}2 \frac{n-2 \sqrt{n-1}-2}{n-2 \sqrt{n-1}-4} & \text { if } n>10 \tag{1.4}\\ \sigma^{*}=\infty & \text { if } n \leq 10\end{cases}
$$

The number σ^{*} is the so called Joseph-Lundgren exponent, introduced in [18] and is related to the existence of an ordering for regular solutions, and therefore plays a key role in associated parabolic problems, see e.g. [25,14]: its meaning will be further clarified later on.

Let us focus first on positive solutions of (1.1). The interest in these problems started from (1.1) and $f(u)=u^{q-1}$; in this case all positive solutions have to be radial, see [13,26] and this is the main motivation to reduce to (1.2): roughly speaking this is a general fact for f which are decreasing in r or r-independent. Let \wedge_{1} be the first eigenvalue of $-\Delta$ in the unit ball with Dirichlet data. Multiplying the equation by the first eigenfunction and integrating by parts, it can be easily proved that (1.1) admits no positive solution for $\lambda \geq \wedge_{1}$ and for any $q>2$ (whenever the domain is bounded, even with no symmetries). For $2<q<2^{*}$ there is at most one positive solution of (1.2) when $\lambda<\wedge_{1}$. When $q=2^{*}$, Brezis and Nirenberg in [3] showed that (1.2) is solvable for $\bar{\lambda}<\lambda<\wedge_{1}$, where $\bar{\lambda}=0$ for $n \geq 4$ and $\bar{\lambda}=\wedge_{1} / 4$ for $n=3$. So, in terms of standard bifurcation theory we can say that the set of pairs $(\lambda, u(0))$, where u is positive and solves (1.2), is a curve \mathcal{C} that stems from $\left(\wedge_{1}, 0\right)$: if $2<q \leq 2^{*}$ the curve goes left without turning points, and it blows up as $\lambda \searrow \bar{\lambda}$ if $q=2^{*}$. The situation changes drastically for $q>2^{*}$. In this case, from the Pohozaev identity it follows that there are no positive solutions for $\lambda \leq 0$. Moreover Merle and Peletier in [20] proved that there is a unique value $\lambda=\lambda_{0}^{*}$ such that (1.2) admits a positive singular solution. In [4] using numerical computations Budd and Norbury showed that the solutions curve turns right and oscillates infinitely many times across the curve $\lambda=\lambda_{0}^{*}$. Such a result was proved rigorously for $q<\sigma^{*}$ using phase plane analysis. From their argument it can be easily inferred that for $q \geq \sigma^{*}$ the curve \mathcal{C} crosses at most finitely many times the curve $\lambda=\lambda_{0}^{*}$. The results obtained in [7] for positive solutions have been recently reproved by Guo and Wei in [15] using PDE techniques and evaluating the Morse index of the solutions. In fact they also showed that for $n \geq 12$ and q large enough (larger than a further critical exponent which is not explicitly computed, but equal or larger than $\left.\sigma^{*}\right), \mathcal{C}$ goes left from $\left(\wedge_{1}, 0\right)$ without turning point and it blows up as $\lambda \searrow \lambda_{0}^{*}$.

Our main purpose is to find assumptions on f which are sufficient to reproduce the pattern described in [7] in the $2^{*}<q<\sigma^{*}$ case. Namely we prove the existence of the following patterns for (1.2) and (1.3) as λ varies.
\mathbf{S} For any $k \in \mathbb{N}$ there is λ_{k}^{*} such that (1.2) (or (1.3)) admits a unique singular solution $u(\downarrow, r)$ with exactly k (non degenerate) zeros for $r \in(0,1)$. In particular for $\lambda=\lambda_{0}^{*}, u(\downarrow, r)$ is a positive solution of (1.2) (or (1.3)).

https://daneshyari.com/en/article/839539

Download Persian Version:

https://daneshyari.com/article/839539

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: isabel.flores@usm.cl (I. Flores), franca@dipmat.univpm.it (M. Franca).

