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In this paper, the inverse eigenvalue problem of reconstructing 
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is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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We are interested in the differential equation ü(t) = −Au(t) − cAu̇(t) + λu(t) +
F (t, u(t)), where c > 0 is a damping factor, A is a sectorial operator and F is a con-
tinuous map. We consider the situation where the equation is at resonance at infinity,
which means that λ is an eigenvalue of A and F is a bounded map. We introduce new
geometrical conditions for the nonlinearity F and use topological degree methods to
find T -periodic solutions for this equation as fixed points of Poincaré operator.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we are interested in the following strongly damped wave equation
utt − c∆ut = ∆u+ λu+ f(t, x, u), t ≥ 0, x ∈ Ω
u(t, x) = 0, t ≥ 0, x ∈ ∂Ω

(1.1)

where c > 0 are damping factors, λ is a real number and f : [0,+∞)× Ω × R→ R is a continuous map on
an open bounded set Ω ⊂ Rn, which is T -periodic in time.

The existence of periodic solutions for damped wave equations has been investigated by many authors in
the last years. In particular a large part of these studies concerns the weakly damped wave equation

utt − cut = ∆u+ λu+ f(t, x, u), t ≥ 0, x ∈ Ω
u(t, x) = 0, t ≥ 0, x ∈ ∂Ω

(1.2)
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where the Laplacian in the damping term appears in the zero fractional power. For instance the results
obtained in the series of papers [1,18,23,21,22] provide the existence of T -periodic solutions for (1.2), in the
case when Ω ⊂ Rn is a thin domain, that is, a Cartesian product of an open bounded subset of Rn−1 and
a small open interval. In these papers the periodic solutions are obtained as fixed points of the Poincaré
operator by topological degree methods. On the other hand, we refer the reader to [7] where a homotopy
invariants method is used to study the existence of periodic solutions in the case where Ω is an open
interval and the damping term ut is additionally involved with a nonlinearity. See also [5,14,16,31,35] for the
results where Ω is again an open interval with the difference that the zero Dirichlet boundary conditions in
Eq. (1.2) are replaced by the periodic one.

From the point of view of the mathematics, physics and engineering it is of importance to consider
Eq. (1.1) in the presence of resonance at infinity, which means that

Ker (λI −A2) ̸= {0} and f is a bounded map,

where we define A2u := −∆u for u ∈ D(A2) := H2(Ω) ∩ H1
0 (Ω). Here we refer the reader to [28,29] for

an extensive discussion on the meaning of resonance in the periodic oscillations of suspension bridges. The
existence of periodic solutions for Eq. (1.1) in the case of the resonance at infinity was considered in [6] under
the assumption that the damping constant c = 0. There was proved that the equation admits a periodic
solution provided the nonlinearity f satisfies so called Landesman–Lazer type conditions. Subsequently, these
conditions and topological degree methods were used in [9] to obtain the existence of periodic solutions in
the weakly damped case (1.2).

In this paper our aim is to study the existence of T -periodic solutions for the strongly damped wave
equation (1.1) in the presence of the resonance at infinity, which seems to be not an explored problem so
far. Throughout the paper we will consider the more general abstract differential equation

ü(t) = −Au(t)− cAu̇(t) + λu(t) + F (t, u(t)), t ∈ [0,+∞) (1.3)

where c > 0 is still a damping constant, λ is a real number, A : X ⊃ D(A) → X is a positive sectorial
operator with compact resolvents on a Banach space X and F : [0,+∞) ×Xα → X is a continuous map,
where Xα = D(Aα) for α ∈ (0, 1), is a fractional space endowed with the graph norm. For more details on
the construction and properties of the fractional spaces we refer the reader to [19,20,36].

After passing into the abstract framework, we will say that Eq. (1.3) is at the resonance at infinity,
provided

Ker (λI −A) ̸= {0} and F is a bounded map.

The main difficulty lies in the fact that, in the presence of resonance, there are examples of the nonlinearity
F such that Eq. (1.3) does not admit a periodic solution. This fact will be explained in Remark 4.1. To
overcome this difficulty we address the naturally arising question which says:

what additional assumptions for the nonlinearity F should be made
to prove that Eq. (1.3) admits a T -periodic mild solution.


(1.4)

To explain our methods more precisely, observe that Eq. (1.3) can be written in the following form

ẇ(t) = −Aw(t) + F(t, w(t)), t > 0,

where A : E ⊃ D(A)→ E is a linear operator on the space E := Xα ×X given by

D(A) := {(x, y) ∈ E | x+ cy ∈ D(A)}
A(x, y) := (−y,A(x+ cy)− λx) for (x, y) ∈ D(A),
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