Double grow-up and global convergence of solutions for a parabolic prescribed mean curvature problem

Hongjing Pan ${ }^{\text {a }}$, Ruixiang Xing ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
${ }^{\mathrm{b}}$ School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, China

A R T I C L E I N F O

Article history:

Received 28 December 2014
Accepted 27 May 2015
Communicated by S. Carl

MSC:

35J93
35K93
53 C 44
53 A 10
Keywords:
Infinite time gradient blow-up
Prescribed mean curvature equation
Mean curvature flow
Double grow-up
Quasilinear parabolic problem
Global convergence

Abstract

The paper is concerned with a parabolic mean curvature type problem with a varying parameter λ. We study large time behavior of global solutions for different ranges of λ and initial data and present some new asymptotic results about global convergence and infinite time blow-up. In particular, it is shown that for suitable ranges of parameter λ and initial data, there exists a double grow-up phenomenon: the solution itself blows up at every interior point and its gradient blows up at the boundary of the domain as $t \rightarrow+\infty$. We also establish an interesting connection between global convergence and the non-classical solution of the associated stationary problem: if initial data are smaller than the non-classical solution, then the solutions must decay to zero in C^{1} norm as $t \rightarrow \infty$.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following initial boundary value problem

$$
\begin{cases}\frac{\partial u}{\partial t}-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=\lambda u, & x \in \Omega, t>0 \tag{1.1}\\ u(x, t)=0, & x \in \partial \Omega, t>0 \\ u(x, 0)=\varphi(x), & x \in \Omega\end{cases}
$$

where λ is a positive parameter and $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with $\partial \Omega \in C^{2+\alpha}$. We are interested in asymptotic behavior of solutions of (1.1) for large time.

[^0]

Fig. 1. Bifurcation diagrams for (1.3) in different parameter spaces.

The problem (1.1) is of both mathematical and physical interest. From the geometrical viewpoint, due to the mean curvature operator $-\operatorname{div}\left(\nabla u / \sqrt{1+|\nabla u|^{2}}\right)$, this is a typical curvature evolutionary problem with force term λu. The stationary problem of (1.1) also comes from a model appearing in capillary surfaces theory and the negative steady state solutions describe pendent liquid drops of equilibrium state (see $[7,26]$). The problem (1.1) can also be viewed as nonlinear heat flow with unit heat capacity and conductivity $\left(1+|\nabla u|^{2}\right)^{-\frac{1}{2}} ; u$ represents for the temperature and λu is the heat source term (see [6]).

In recent years, the stationary problem of (1.1) has been well investigated; see [17,20,26] and the monograph [7]. More results about elliptic mean curvature type equations, see $[2,19]$ and the references therein. However, only a little attention seems to be paid to the analysis of parabolic mean curvature equations (1.1), even for the case $N=1$. We refer to $[3,6,25]$.

In this paper, we focus on the one-dimensional case of (1.1), i.e.

$$
\begin{cases}\frac{\partial u}{\partial t}-\left(\frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}}\right)^{\prime}=\lambda u, & x \in(-L, L), t>0 \tag{1.2}\\ u(-L, t)=u(L, t)=0, & t>0, \\ u(x, 0)=\varphi(x), & x \in(-L, L) .\end{cases}
$$

Throughout the paper, we assume that $\lambda>0, \varphi(x) \in C^{2+\alpha}[-L, L], \alpha \in(0,1)$, and φ is compatible with the boundary condition $u=0$. The prime ' denotes the derivative with respect to the spatial variable x.

The steady states of (1.2) satisfy

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}}\right)^{\prime}=\lambda u, \quad x \in(-L, L), \tag{1.3}\\
u(-L)=u(L)=0
\end{array}\right.
$$

It is well known that there exists a number λ_{*}, with $0<\lambda_{*}<\lambda_{1}=\left(\frac{\pi}{2 L}\right)^{2}$, such that for $\lambda \in\left(\lambda_{*}, \lambda_{1}\right)$, (1.3) has exactly one nontrivial positive classical solution, while for $\lambda \in\left(0, \lambda_{*}\right] \cup\left[\lambda_{1},+\infty\right),(1.3)$ has no nontrivial positive classical solutions (see e.g. [9,16,22]). Here, by a classical solution we mean a function $u \in C^{2}[-L, L]$ satisfying (1.3). Besides, it is also known that for $\lambda \in\left(0, \lambda_{*}\right]$, (1.3) has exactly one positive non-classical solution; while for $\lambda \in\left(\lambda_{*},+\infty\right)$, (1.3) has no positive non-classical solutions (see [2,23]). These results are depicted by the bifurcation diagrams in Fig. 1, where $r=\max u=u(0)$, the thin curve $r=\sqrt{\frac{2}{\lambda}}$ in the left graph is the (gradient) blow-up curve (see [22] or [23]), the continuous thick line represents classical solutions, and the thick dashed line represents non-classical solutions. Here, the non-classical solution is defined in the sense of $[2,18]$. Precisely, a non-classical solution of (1.3) is a function $u:[-L, L] \rightarrow \mathbb{R}$, with $u \in C^{2}(-L, L)$, $u^{\prime} \in C\left([-L, L],[-\infty,+\infty]\right.$), and $u^{\prime}(-L)=+\infty$ or $u^{\prime}(L)=-\infty$, satisfying (1.3) on ($-L, L$) (see Fig. 2 for

https://daneshyari.com/en/article/839542

Download Persian Version:
https://daneshyari.com/article/839542

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: panhj@m.scnu.edu.cn (H. Pan), xingrx@mail.sysu.edu.cn (R. Xing).

