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and initial data and present some new asymptotic results about global convergence
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and infinite time blow-up. In particular, it is shown that for suitable ranges of
parameter A and initial data, there exists a double grow-up phenomenon: the solution

%?903 itself blows up at every interior point and its gradient blows up at the boundary of

35K93 the domain as ¢ — +o0o. We also establish an interesting connection between global

53044 convergence and the non-classical solution of the associated stationary problem: if

53A10 initial data are smaller than the non-classical solution, then the solutions must decay
to zero in C'! norm as t — co.
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1. Introduction

Consider the following initial boundary value problem

ou Vu

— —div| ——= | =Xy, z€2,t>0,

ot V14| Vul|? (1.1)
u(z,t) =0, xedf, t>0,

u(‘rﬂo) = 90(35)3 WS *Qa

where ) is a positive parameter and 2 C RY is a bounded domain with 92 € C?T®. We are interested in
asymptotic behavior of solutions of (1.1) for large time.
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Fig. 1. Bifurcation diagrams for (1.3) in different parameter spaces.
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The problem (1.1) is of both mathematical and physical interest. From the geometrical viewpoint, due to
the mean curvature operator —div(Vu/4/1 + |Vul?), this is a typical curvature evolutionary problem with
force term Au. The stationary problem of (1.1) also comes from a model appearing in capillary surfaces the-
ory and the negative steady state solutions describe pendent liquid drops of equilibrium state (see [7,26]).
The problem (1.1) can also be viewed as nonlinear heat flow with unit heat capacity and conductivity
(14 |Vu|?)~2; u represents for the temperature and Au is the heat source term (see [6]).

In recent years, the stationary problem of (1.1) has been well investigated; see [17,20,26] and the mono-
graph [7]. More results about elliptic mean curvature type equations, see [2,19] and the references therein.
However, only a little attention seems to be paid to the analysis of parabolic mean curvature equations (1.1),
even for the case N = 1. We refer to [3,6,25].

In this paper, we focus on the one-dimensional case of (1.1), i.e.

% _ (JW)' =M, z€(-LL), t>0,
w(~L,t) = u(L,t) = 0, t>0, 42
u(z,0) = p(z), x & (=L, L).

Throughout the paper, we assume that A > 0, p(x) € C?***[~L, L], a € (0,1), and ¢ is compatible with the
boundary condition u = 0. The prime ’ denotes the derivative with respect to the spatial variable x.
The steady states of (1.2) satisfy

!/

_(L:—L(zl’)?)/ =M, x€(=L,L),

u(—L) =u(L) = 0.

(1.3)

It is well known that there exists a number A, with 0 < A, < A1 = (55)?, such that for A € (A, A1), (1.3)
has exactly one nontrivial positive classical solution, while for A € (0, \,]U[A1,4+00), (1.3) has no nontrivial
positive classical solutions (see e.g. [9,16,22]). Here, by a classical solution we mean a function u € C?[—L, L]
satisfying (1.3). Besides, it is also known that for A € (0, \.], (1.3) has exactly one positive non-classical

solution; while for A € (A, +00), (1.3) has no positive non-classical solutions (see [2,23]). These results are
depicted by the bifurcation diagrams in Fig. 1, where r = maxu = u(0), the thin curve r = % in the left
graph is the (gradient) blow-up curve (see [22] or [23]), the continuous thick line represents classical solutions,
and the thick dashed line represents non-classical solutions. Here, the non-classical solution is defined in the
sense of [2,18]. Precisely, a non-classical solution of (1.3) is a function u : [-L, L] — R, with u € C?(—L, L),
u' € C([-L, L], [—00,4+0]), and v/ (—L) = +o0 or v/ (L) = —oo, satisfying (1.3) on (=L, L) (see Fig. 2 for
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