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In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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In this paper, we study the initial and boundary value problem of the Navier–Stokes
equations in the half space. We prove the unique existence of weak solution
u ∈ Lq(Rn+ × (0, T )) with ∇u ∈ L

q
2
loc

(Rn+ × (0, T )) for a short time interval when

the initial data h ∈ B
− 2
q

q (Rn+) and the boundary data g ∈ Lq(0, T ;B
− 1
q

q (Rn−1)) +

Lq(Rn−1;B
− 1

2q
q (0, T )) with normal component gn ∈ Lq(0, T ; Ḃ

− 1
q

q (Rn−1)), n+2 <
q <∞ are given.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let Rn+ = {x ∈ Rn | xn > 0}, n ≥ 2 and 0 < T < ∞. Let us consider the nonstationary Navier–Stokes
equations

ut −∆u+∇p = f − div (u⊗ u), div u = 0, in Rn+ × (0, T ),
u|t=0 = h, u|xn=0 = g.

(1.1)

There are abundant literatures for the study of the Navier–Stokes equations with homogeneous boundary
data. See [1,6,28,34] and references therein for the half space problem. See also [1,9,14,16,17,21,23,22,24,29,31]
and the references therein for the problems in other domains such as whole space, a bounded domain, or
exterior domain.
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Over the past decade, the Navier–Stokes equations with the nonhomogeneous boundary data have been
studied actively. See [8,3,2,32,41] and references therein for the half space problem. See also [3,2,11,10,12,
13,18–20,29] and the references therein for the problems in other domains such as whole space, a bounded
domain, or exterior domain.

In [18–20,34], the solvabilities of bounded or exterior domain problem have been studied for a boundary
data in anisotropic space Bα−

1
q ,
α
2−

1
2q

q0 (∂Ω × (0, T )), α > 1
q (with q > n+2

α+1 ), where g ∈ Bs,
s
2
q0 (S × (0, T ))

means the zero extension of g to S × (−∞, T ) is in B
s, s2
q (S × (−∞, T )). On the other hand, in [8,3,2,11,

10,12,13,32,41] rough boundary data have been considered. H. Amann [3] showed unique maximal solution
u ∈ Lrloc(0, T ∗, H

1
r
q (Ω)), 3 < q < r < ∞, 1

r + 3
r ≤ 1 for some maximal time T ∗ in any domain in R3

with nonempty compact smooth boundary when a nonzero initial data in B
− 1
r

q (Ω) ∩ Lqσ(Ω) and nonzero
boundary data in Lrloc(R+;W−

1
q+

1
r

q (∂Ω)) are given. J.E. Lewis [32] showed a global in time existence
of solution in Lp(R+;Lq(Rn+)) for small data h ∈ Lr1(Rn+) ∩ Lr2(Rn+) and g ∈ Ld(R+;Lr(Rn+)) with
r1, r2, p, q, r, d <∞, r1 < n < r2,

n−1
r + 2

d = 1, and 2
q + 2

p = 1. K.A. Voss [41] showed the existence of a global

in time self-similar solution for small data h ∈ Ḃ−
1
2

6,∞(R3
+) ∩ Ḃ−

1
4

4,∞(R3
+) and t

1
3 g(t) ∈ L∞(R+;L3(R2)) with

gn = 0. M. Fernandes de Almeida and L.C.F. Ferreira [8] showed the existence of global in time solution in
the framework of Morrey space for a small data h ∈Mp,n−p(Rn+), t 1

2−
p−1
2r g ∈ BC(R+,Mr,n−p(Rn−1)) and

t
1
2−

p
2q gn ∈ BC(R+,M (p−1)q

p ,n−p(R
n−1)), 2 < p, q <∞, 1 < r <∞.

In particular, R. Farwig, H. Kozono and H. Sohr [12] showed the local in time existence of a very weak
solution u ∈ Ls(0, T ;Lq(Ω)) in an exterior domain when nonzero initial in B−

2
s

q,s and nonzero boundary data
in Ls(0, T ;W−

1
q

q (∂Ω)) for 2
s + 3

q = 1, 2 < s <∞, 3 < q <∞ are given. (Precisely speaking, in [12] a nonzero
divergence is considered.)

In this paper, we show the unique existence of u ∈ Lq(Rn+ × (0, T )) with ∇u ∈ L
q
2 (Rn+ × (0, T )) for the

Navier–Stokes equations (1.1) for a small time interval (0, T ) with the initial h ∈ B−
2
q

q (Rn+) and the boundary
data g ∈ Lq(0, T ;B−

1
q

q (Rn−1)) + Lq(Rn−1;B−
1
2q

q (0, T )) with gn ∈ Lq(Rn−1;B−
1
2q

q (0, T )), q > n + 2. Our
result could be compared with the one in [12]. The case q = r = 5 in [12] coincides with the case q = 5 in our
result, except the fact that our result covers larger class for g′ (the tangential component of the boundary
data) since Lq(0, T ;B−

1
q

q (Rn−1)) + Lq(Rn−1;B−
1
2q

q (0, T )) % Lq(Rn−1;B−
1
2q

q (0, T )).
The following is the main result of this paper.

Theorem 1.1. Let ∞ > q > n + 2. Assume that h ∈ B−
2
q

q (Rn+) with div h = 0, g ∈ Lq(0, T ;B−
1
q

q (Rn−1)) +
Lq(Rn−1;B−

1
2q

q (0, T )) with gn ∈ Lq(0, T ; Ḃ−
1
q

q (Rn−1)). Then there is T ∗(0 < T ∗ < T ) so that the
Navier–Stokes equations (1.1) have a unique weak solution u ∈ Lq(Rn+×(0, T ∗)) with ∇u ∈ L

q
2
loc(Rn+×(0, T ∗)).

The space Lq(0, T ;B−
1
q

q (Rn−1)) + Lq(Rn−1;B−
1
2q

q (0, T )) coincides with anisotropic Besov space
B
− 1
q ,−

1
2q

q (Rn−1 × R+) (see Section 2). Our result is optimal in the sense that the spaces for the initial
and the boundary data cannot be enlarged for our solution class. Our arguments in this paper are based
on the elementary estimates of the heat operator and the Laplace operator. The solution representation in
Section 5.1 could be useful to study asymptotic behavior of the solution.

Before proving Theorem 1.1, we have studied the initial and boundary value problem of the Stokes
equations in Rn+ × (0, T ) as follows:

ut −∆u+∇p = f, div u = 0, in Rn+ × (0, T ),
u|t=0 = h, u|xn=0 = g.

(1.2)
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