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In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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In this paper, we provide a regularity criterion for the Navier–Stokes equations
involving the diagonal entry of the velocity gradient, which says that if

∂3u3 ∈ L∞(0, T ;L2(R3)),
then the weak solution is smooth on (0, T ). This is an important case in the sense
that the strong solution is in this class. Moreover, we verify the limiting case of one
regularity criterion in Cao and Titi (2011).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This paper concerns itself with the following three-dimensional (3D) incompressible Navier–Stokes
equations 

ut + (u · ∇)u −△u +∇π = 0,
divu = 0,
u(0) = u0,

(1)

where u = (u1, u2, u3) is the fluid velocity field, π is a scalar pressure, and u0 is the prescribed initial data.
Since the pioneering work of Leray [16] and Hopf [10] on the global existence of a weak solution u (now

being called the Leray–Hopf weak solution, see Definition 1), there have been a lot of studies devoted to
studying the regularity of such solutions. Prodi [21], Serrin [22] and Ladyzhenskaya [14] first showed that if

u ∈ Lp(0, T ;Lq(R3)), with 2
p

+ 3
q

= 1, 3 ≤ q ≤ ∞, (2)
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then u is smooth on (0, T ). Notice that the liming case was covered only in 2003 by Eskauriaza–Serëgin–
Sverák [8]. Then H. Beirão da Veiga [1] showed the regularity criterion involving the velocity gradient

∇u ∈ Lp(0, T ;Lq(R3)), with 2
p

+ 3
q

= 2, 3
2 ≤ q ≤ ∞. (3)

Note that the limiting case ∇u ∈ L∞(0, T ;L 3
2 (R3)) follows from (2) and the Sobolev embedding theorem.

Due to the divergence-free condition, an interesting problem is whether the regularity of the solution
can be guaranteed by partial components of the velocity or its gradient. Neustupa–Novotny–Penel [17] and
Zhou [29] first proved the following regularity condition

u3 ∈ Lp(0, T ;Lq(R3)), with 2
p

+ 3
q

= 1
2 , 6 < q ≤ ∞. (4)

This was improved by Kukavica–Ziane [12] to be

u3 ∈ Lp(0, T ;Lq(R3)), with 2
p

+ 3
q

= 5
8 ,

24
5 < q ≤ ∞, (5)

and by Cao–Titi [4] to be

u3 ∈ Lp(0, T ;Lq(R3)), with 2
p

+ 3
q

= 2
3 + 1

3q ,
7
2 < q ≤ ∞. (6)

Thanks to Zhou–Pokorný [31], we have the finest up-to-date result

u3 ∈ Lp(0, T ;Lq(R3)), with 2
p

+ 3
q

= 3
4 + 1

2q ,
10
3 < q ≤ ∞, (7)

with the liming case u3 ∈ L∞(0, T : L 10
3 (R3)) treated in [11].

As far as the regularity criteria involving the velocity gradient, Pokorný [20] and Zhou [28] proved that
the condition

∇u3 ∈ Lp(0, T ;Lq(R3)), with 2
p

+ 3
q

= 3
2 , 2 ≤ q ≤ ∞ (8)

implies smoothness. For further progresses on this topic, the interested readers are referred to [6,24,23,26,27,
30]. Another approach is to show the regularity of the solution under the assumptions on ∂3u, see [2,13,18,19].

We may also consider the regularity condition involving only one entry of the velocity gradient. In [31],
it was proved that if

∂3u3 ∈ Lp(0, T ;Lq(R3)), with 2
p

+ 3
q
<

4
5 ,

15
4 < q ≤ ∞, (9)

then the solution is regular. By introducing a new method of proof, (9) was improved in [11] to be

∂3u3 ∈ Lp(0, T ;Lq(R3)), with 2
p

+ 3
q
≤ 4

5 ,
15
4 ≤ q ≤ ∞. (10)

Then Cao–Titi [5] established two general criteria which read

∂iuj ∈ Lp(0, T ;Lq(R3)), with i ̸= j,
2
p

+ 3
q
≤ 1

2 + 3
2q , 3 < q ≤ ∞; (11)

∂iui ∈ Lp(0, T ;Lq(R3)), with 2
p

+ 3
q
≤ 3

4 + 3
2q , 2 < q ≤ ∞. (12)

The limiting case of (11)

∂iuj ∈ L∞(0, T ;L3(R3))

could just be verified by using the specified r = 7
3 in [5, Lemma 1], see also [9, Theorem 1.1].
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