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a b s t r a c t

We prove a Harnack inequality for minimisers of a class of non-autonomous functionals
with non-standard growth conditions. They are characterised by the fact that their energy
density switches between two types of different degenerate phases.
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1. Introduction and results

In this paper we complete the study of the low order regularity properties of minima of a class of functionals with
non-standard growth conditions. They are basically characterised by the fact of having the energy density switching between
two different types of degenerate behaviours, according to the size of a ‘‘modulating coefficient’’ a(·) that determines the
‘‘phase’’. Specifically, we consider a family of functionals whose model is given by the following one:

Pp,q(w, Ω) :=


Ω


|Dw|

p
+ a(x)|Dw|

q dx (1.1)

where 1 < p ≤ q and Ω ⊂ Rn is a bounded open set with n ≥ 2. In this paper the function a(·) will always be assumed
to be bounded and non-negative. In the standard case p = q the functional in question has standard p-polynomial growth
and the regularity theory of minimisers is by now well-understood; see for instance [26,19,29]. The case p < q falls in
the realm of functionals with non-standard growth conditions of (p, q) type, as initially defined and studied by Marcellini
[27,28]. These are general functionals of the type

W 1,1(Ω) ∋ w −→ Fp,q(w, Ω) :=


Ω

F(x, w,Dw) dx, Ω ⊂ Rn, (1.2)

where the integrand F : Ω × R × Rn
→ [0, ∞) is a Carathéodory function satisfying bounds of the type

|z|p . F(x, v, z) . |z|q + 1 1 < p < q (1.3)

whenever (x, v, z) ∈ Ω × R × Rn. Indeed, the energy density

Hp,q(x, z) := |z|p + a(x)|z|q (1.4)
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of the functional Pp,q in (1.1) exhibits a polynomial growth of order qwith respect to the gradient variable z when a(x) > 0
(this is the ‘‘(p, q)-phase’’), while on the phase transition zero set {a(x) = 0} the growth is at rate p (this is the ‘‘p-phase’’).
Therefore, from a global viewpoint, also the functional Pp,q satisfies (1.3) and therefore falls in the realm of those with
(p, q)-growth conditions. Now, while in the case of an autonomous energy density of the type F(x, w,Dw) ≡ F(Dw)
the regularity theory of minima of functionals with (p, q)-growth conditions is by now well-understood (see for instance
[4,5,27,13,24,29]), the case of non-autonomous integrals is still very much open and indeed new phenomena appear, which
are directly linked to the specific structure of the functional. In this paper we are interested in functionals whose structure
exhibits a phase transition as in (1.1). The functional Pp,q belongs to a family of variational integrals introduced by Zhikov
[32,35] in order to produce models for strongly anisotropic materials. They intervene in Homogenisation theory and
Elasticity, where the coefficient a(·) for instance dictates the geometry of a compositemade by two differentmaterials. They
can also be used in order to provide new examples of Lavrentiev phenomenon [33,34]. For the functional Pp,q a very sharp
interaction occurs between the size of the phase transition, measured by the distance between p and q, and the regularity
of the coefficient a(·), as initially shown in [14,16]. There, for every ε > 0, it has been shown the existence of a coefficient
function a(·) ∈ C0,α , and of exponents p, q satisfying

n − ε < p < n < n + α < q < n + α + ε, (1.5)

such that there exist boundedminimisers of Pp,q whose set of essential discontinuity points has Hausdorff dimension larger
than n−p−ε. In other words, minimisers can be almost as bad as any otherW 1,p-function. Regularity assertions are instead
more recent. In [6] the last two named authors have shown that the conditions

0 ≤ a(·) ∈ C0,α(Ω) and q ≤ p + α (1.6)

for some α ∈ (0, 1], are sufficient in order to prove local Hölder continuity of locally bounded minimisers of the functional
Pp,q. The numerology displayed in (1.5) shows that the conditions in (1.6) are sharp. It is worthwhile to mention that the
results of [6] cover more general functionals than Pp,q and that further conditions, this time involving also the ambient
dimension n, eventually allow to conclude that any local minimiser is locally bounded. We shall come back on these points
in Remark 1.3.

Starting from the Hölder continuity result of [6] and inspired by what happens in the case of functionals with standard
polynomial growth (p = q), we now wonder if a suitable Harnack inequality holds for non-negative minimisers. We show
here that the answer to this question is positive and that Harnack inequality holds in the case of functionals withmeasurable
coefficients, but still encoding the peculiar structure of Pp,q, in terms of growth conditions. We indeed consider functionals
of the type in display (1.2)where the energy density F(·) is only assumed to be a Carathéodory function satisfying the bounds

ν ≤
F(x, v, z)
Hp,q(x, z)

≤ L (1.7)

whenever z ∈ Rn
\ {0}, v ∈ R and x ∈ Ω , where 0 < ν ≤ 1 ≤ L; Hp,q(·) has been defined in (1.4). In this setting we

recall that a function u ∈ W 1,1
loc (Ω) is a local minimiser of the functional in (1.2) if and only if F(x, u,Du) ∈ L1loc(Ω) and the

minimality condition
supp (u−w)

F(x, u,Du) dx ≤


supp (u−w)

F(x, w,Dw) dx

is satisfied whenever w ∈ W 1,1
loc (Ω) is such that supp (u − w) b Ω . Since we are assuming (1.7), and F(x, u,Du) ∈ L1loc(Ω),

without loss of generality wemay assume that allW 1,1
loc -minimisers will automatically be inW 1,p

loc (Ω), since the lower bound
in (1.3) will always be in force for the functionals we are going to consider. Our first result is now the following:

Theorem 1.1. Let u ∈ W 1,p
loc (Ω) ∩ L∞

loc(Ω) be a non-negative local minimiser of the functional Fp,q, defined in (1.2), under
the assumptions (1.7), (1.6) and with p < n. Then for every ball BR with B9R ⊂ Ω there exists a constant c, depending on
n, p, q, ν, L, α, [a]C0,α(Ω), ∥u∥L∞(B9R) and diam (Ω), such that

sup
BR

u ≤ c inf
BR

u

holds.

In the case p > n minimisers are automatically locally bounded by the Sobolev embedding theorem, so that assuming
u ∈ L∞

loc(Ω) is superfluous. The same happens when p = n bymeans of the results of [9], see Remark 1.3. On the other hand,
as already noticed in [6,7], when p > n the condition in (1.6) can be relaxed, see also Remark 1.3. Indeed, we shall consider

0 ≤ a(·) ∈ C0,α(Ω) and
q
p

≤ 1 +
α

n
. (1.8)



Download English Version:

https://daneshyari.com/en/article/839600

Download Persian Version:

https://daneshyari.com/article/839600

Daneshyari.com

https://daneshyari.com/en/article/839600
https://daneshyari.com/article/839600
https://daneshyari.com

