Some Liouville theorems for the fractional Laplacian

Wenxiong Chen ${ }^{\text {a,b,* }}$, Lorenzo D'Ambrosio ${ }^{c}$, Yan Li ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Mathematics and Information Science, Henan Normal University, China
${ }^{\text {b }}$ Department of Mathematical Sciences, Yeshiva University, New York, NY, 10033, USA
${ }^{\text {c }}$ Dipartimento di Matematica, Università degli Studi di Bari, via Orabona, 4-70125 Bari, Italy

ARTICLE INFO

Communicated by S. Carl
Dedicated to Professor Enzo Mitidieri on the occasion of his 60th birthday

Keywords:

The fractional Laplacian
α-harmonic functions
Liouville theorem
Poisson representations
Fourier analysis

A B S T R A C T

In this paper, we prove the following result. Let α be any real number between 0 and 2 . Assume that u is a solution of

$$
\left\{\begin{array}{l}
(-\Delta)^{\alpha / 2} u(x)=0, \quad x \in \mathbb{R}^{n} \\
\underline{\lim }_{|x| \rightarrow \infty} \frac{u(x)}{|x|^{\gamma}} \geq 0
\end{array}\right.
$$

for some $0 \leq \gamma \leq 1$ and $\gamma<\alpha$. Then u must be constant throughout \mathbb{R}^{n}.
This is a Liouville Theorem for α-harmonic functions under a much weaker condition.
For this theorem we have two different proofs by using two different methods: One is a direct approach using potential theory. The other is by Fourier analysis as a corollary of the fact that the only α-harmonic functions are affine.
© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The well-known classical Liouville's Theorem states that
Any harmonic function bounded below in all of R^{n} is constant.
One of its important applications is the proof of the Fundamental Theorem of Algebra. It is also a key ingredient in deriving a priori estimates for solutions in PDE analysis.

This Liouville Theorem has been generalized to the fractional Laplacian by Bogdan, Kulczycki, and Nowak [2]:
Proposition 1.1. Let $0<\alpha<2$ and $n \geq 2$. Assume that u is a solution of

$$
\begin{cases}(-\triangle)^{\alpha / 2} u(x)=0, & x \in \mathbb{R}^{n} \\ u(x) \geq 0, & x \in \mathbb{R}^{n}\end{cases}
$$

Then u must be constant.
The same result has been proved by Zhuo, Chen, Cui, and Yuan [25] using a completely different method; and then interesting applications of this Liouville theorem to integral representations of solutions for nonlinear equations and systems involving the fractional Laplacian were investigated in the same article.

[^0]The above proposition has also been proved but not explicitly stated in [14] for α-harmonic functions in the average sense (see also Section 4 for the definition). Indeed it can be deduced from [14, Theorem 1.30].

In [1], Axler, Bourdon, and Ramey replaced the condition "bounded below" in the classical Liouville Theorem by a much weaker one:

$$
\lim _{|x| \rightarrow \infty} \frac{u(x)}{|x|} \geq 0
$$

Then Enzo Mitidieri [18] conjectured that a similar result should hold for the fractional Laplacian. The main purpose of this paper is to prove this conjecture.

The fractional Laplacian in R^{n} is a nonlocal pseudo-differential operator, taking the form

$$
\begin{equation*}
(-\Delta)^{\alpha / 2} u(x)=C_{n, \alpha} \lim _{\epsilon \rightarrow 0} \int_{R^{n} \backslash B_{\epsilon}(x)} \frac{u(x)-u(z)}{|x-z|^{n+\alpha}} d z \tag{1}
\end{equation*}
$$

where α is any real number between 0 and 2 . This operator is well defined in δ, the Schwartz space of rapidly decreasing C^{∞} functions in R^{n}. In this space, it can also be equivalently defined in terms of the Fourier transform

$$
\mathcal{F}\left((-\Delta)^{\alpha / 2} u\right)(\xi)=|\xi|^{\alpha} \mathcal{F}(u)(\xi)
$$

where $\mathcal{F}(u)$ is the Fourier transform of u. One can extend this operator to a wider space of distributions.
Let

$$
L_{\alpha}=\left\{u: R^{n} \rightarrow R \left\lvert\, \int_{R^{n}} \frac{|u(x)|}{1+|x|^{n+\alpha}} d x<\infty\right.\right\}
$$

Then in this space, one can defined $(-\Delta)^{\alpha / 2} u$ as a distribution by

$$
\left\langle(-\Delta)^{\alpha / 2} u(x), \phi\right\rangle=\int_{R^{n}} u(x)(-\Delta)^{\alpha / 2} \phi(x) d x, \quad \forall \phi \in C_{0}^{\infty}\left(R^{n}\right)
$$

The operator can be also defined by considering the following problem in $\mathbb{R}^{n} \times[0,+\infty)$:

$$
f(x, 0)=u(x) \quad \text { on } \mathbb{R}^{n}, \quad \Delta_{x} f+\frac{1-\alpha}{y} f_{y}+f_{y y}=0
$$

and defining

$$
C(-\Delta)^{\alpha / 2} u(x):=-\lim _{y \rightarrow 0} y^{1-\alpha} f_{y}(x, y)
$$

where $C=C(n, \alpha)$ is a suitable positive constant. See [5] for more details.
Throughout this paper, we will consider the fractional Laplacian defined in (1). We say that u is α-harmonic if $u \in L_{\alpha}$ and satisfies

$$
(-\Delta)^{\alpha / 2} u=0
$$

in the sense of distributions:

$$
\int_{R^{n}} u(x)(-\Delta)^{\alpha / 2} \phi(x) d x=0 \quad \forall \phi \in C_{0}^{\infty}\left(R^{n}\right)
$$

Our main objective is to prove the following result.
Theorem 1.2. Let $0<\alpha<2$. Assume that $u \in L_{\alpha}$ is α-harmonic and

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \frac{u(x)}{|x|^{\gamma}} \geq 0 \tag{2}
\end{equation*}
$$

for some $0 \leq \gamma \leq 1$ and $\gamma<\alpha$.
Then

$$
u(x) \equiv C, \quad x \in \mathbb{R}^{n}
$$

We prove the above result by two different methods. The first one is given in Section 2 and it is a direct proof based on classical potential theory.

The second proof is a direct consequence of the following
Theorem 1.3. Let $0<\alpha<2$, and $u \in L_{\alpha}$ be α-harmonic. Then u is affine. In particular, if $\alpha \leq 1$, then u is constant.

https://daneshyari.com/en/article/839607

Download Persian Version:
https://daneshyari.com/article/839607

Daneshyari.com

[^0]: * Corresponding author at: Department of Mathematical Sciences, Yeshiva University, New York, NY, 10033, USA.

 E-mail addresses: wchen@yu.edu (W. Chen), dambros@dm.uniba.it (L. D’Ambrosio), yali3@mail.yu.edu (Y. Li).

