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a b s t r a c t

We study the weak anchoring condition for nematic liquid crystals in the context of the
Landau–De Gennes model. We restrict our attention to two dimensional samples and to
nematic director fields lying in the plane, for which the Landau–De Gennes energy reduces
to the Ginzburg–Landau functional, and the weak anchoring condition is realized via a
penalized boundary term in the energy. We study the singular limit as the length scale
parameter ε → 0, assuming theweak anchoring parameterλ = λ(ε) → ∞ at a prescribed
rate. We also consider a specific example of a bulk nematic liquid crystal with an included
oil droplet and derive a precise description of the defect locations for this situation, for
λ(ε) = Kε−α with α ∈ (0, 1]. We show that defects lie on the weak anchoring boundary
for α ∈ (0, 1

2 ), or for α =
1
2 and K small, but they occur inside the bulk domain Ω for

α > 1
2 or α =

1
2 with K large.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we examine the weak anchoring condition for nematic liquid crystals in the context of the Landau–De
Gennes model. Weak anchoring refers to the imposition of boundary behavior by means of energy penalization, rather
than via a nonhomogeneous Dirichlet condition (which is referred to as ‘‘strong anchoring’’). We restrict our attention
to two-dimensional samples and to nematic director fields lying in the plane. With this dimensional restriction, the
Landau–De Gennes energy reduces to the familiar Ginzburg–Landau energy, for a complex valued order parameter uwhich
is mapped to the Q -tensor in the Landau–De Gennes theory, and the weak coupling condition is expressed as a boundary
penalization term added to the Ginzburg–Landau energy. We study the singular limit as the length scale parameter ε → 0,
assuming theweak anchoring penalization strengthλ = λ(ε) → ∞ at a prescribed rate.We also consider a specific example
of a bulk nematic liquid crystal with an included oil droplet [1], and derive a precise description of the defect locations for
this situation, depending on the relative strength of the weak anchoring parameter λ(ε). Although the Ginzburg–Landau
functional represents a highly simplified model for nematic liquid crystals, we expect that it nevertheless captures the
salient information concerning the formation of singularities under the weak anchoring condition.

We first describe our results in the context of the Ginzburg–Landaumodelwith boundary penalization; the description of
the Landau–De Gennes model and the physical droplet setting, together with the reduction to the Ginzburg–Landau energy,
will be explained afterwards. In particular, the solution to the droplet problem is stated in Theorem 1.2. Let

λ = λ(ε) = Kε−α
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forα ∈ (0, 1], K > 0 constant.We impose theweak anchoring condition on a connected componentΓ of ∂Ω via a boundary
term in the energy. Let g : Γ → S1 be a C2 smooth map, and define

Eε(u) :=
1
2


Ω


|∇u|2 +

1
2ε2


|u|2 − 1

2
dx +

λ

2


Γ

|u − g|2 dS.

A critical point of Eε(u) in H1(Ω; C) solves

−1u +
1
ε2
(|u|2 − 1)u = 0, inΩ,

∂u
∂ν

+ λ(u − g) = 0, on Γ .

 (1.1)

We consider three different geometries, each with some physical motivation.
Problem I: Ω ⊂ R2 is simply connected and with smooth C2 boundary ∂Ω = Γ . In this case, the appropriate space is
HI := H1(Ω; C), and (1.1) gives the Euler–Lagrange equations corresponding to this variational problem.
Problem II: Ω = Ω1 \ Ω0 is a topological annulus, with C2 smooth boundary in two components, Γ = ∂Ω0 the interior
boundary, and ∂Ω1 the exterior. We impose weak anchoring via g : Γ → S1 on the interior boundary, and a constant
Dirichlet condition on the exterior, so the Euler–Lagrange equations are (1.1) with the additional condition,

u = 1, on ∂Ω1. (1.2)

The appropriate space is

HII := {u ∈ H1(Ω; C) : u = 1 on ∂Ω1}.

The choice of a constant as a Dirichlet (strong anchoring) boundary condition is motivated by the physical model of a
droplet Ω0 included in a bulk nematic (described below); mathematically, the problem may be posed with any S1-valued
map imposed on the outer boundary ∂Ω1.
Problem III:Ω = R2

\Ω0 is an exterior domain, with boundary Γ = ∂Ω0. We impose a weak anchoring condition on Γ via
the C2 map g : Γ → S1 ⊂ C, and assume that there exists a constant φ0 ∈ (−π, π] for which

u(x) → eiφ0 as |x| → ∞. (1.3)

We minimize Eε in the space

HIII := {u ∈ H1
loc(Ω; C) : ∃φ0 ∈ R such that u → eiφ0 as |x| → ∞},

andminimizers satisfy the Euler–Lagrange equations (1.1) in the unbounded domainΩ , with asymptotic condition (1.3). As
in Problem II, the choice of a constant at infinity is motivated by the droplet problem posed in [1].

The space HIII is problematic, as the Dirichlet energy does not control the phase of u as |x| → ∞, and in fact the existence
of minimizers for fixed ε > 0 is not immediate. Indeed, unlike the Dirichlet problems I and II, we may not specify a limiting
constant as |x| → ∞; the asymptotic phase φ0 is an unknown quantity in the problem, determined by the choice ofΩ0 and
g . In the application to nematic liquid crystals, Ω0 = D1(0) a disk, and g = eiDθ is symmetric, and in this case we may in
fact conclude that the energy minimizers satisfy u(x) → 1 as |x| → ∞ (see Theorem 2.1).

Our aim in this paper is to study the minimizers of Eε as ε → 0, for each problem I, II, III, and determine how the location
of the vortices is affected by the weak anchoring strength λ = λ(ε) = Kε−α . In particular, we observe that α =

1
2 is the

critical value for the weak anchoring strength, with vortices lying on the boundary component Γ for α < 1
2 and inside Ω

for α > 1
2 . Here is our main result for Problems I, II, and III:

Theorem 1.1. Let g : Γ → S1 be a given C2 function with degree D ∈ N. Let uε be minimizers of Eε in one of the spaces Hi,
i = I, II, III. For any sequence of ε → 0 there is a subsequence εn → 0 and D points {p1, . . . , pD} inΩ ∪ Γ such that

uεn → u∗ in C1,µ
loc (Ω \ {p1, . . . , pD}),

for 0 < µ < 1, with u∗ : Ω \ {p1, . . . , pD} → S1 a harmonic map. Moreover,

(a) u∗ = g on Γ \ {p1, . . . , pD}.
(b) For each i = 1, . . . ,D , deg(u∗; pi) = 1 in problem I, and deg(u∗; pi) = −1 in problems II and III.
(c) If 0 < α < 1

2 , each pi ∈ Γ ; if 1
2 < α ≤ 1, then pi ∈ Ω for all i = 1, . . . ,D .

(d) If α =
1
2 , there exist K0 < K1 ∈ R such that the vortices lie on Γ for K < K0 and they lie insideΩ for K > K1.

(e) There are Renormalized Energy functions WΩ : ΩD
→ R and WΓ : Γ D

→ R such that if (p1, . . . , pD) lie on Γ , they
minimize WΓ , and if they lie insideΩ they minimize WΩ .
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