

Contents lists available at ScienceDirect

# **Nonlinear Analysis**

journal homepage: www.elsevier.com/locate/na



# Multiple blow-up solutions for an exponential nonlinearity with potential in $\mathbb{R}^2$



Shengbing Deng a,b, Danilo Garrido b, Monica Musso b,\*

#### ARTICLE INFO

#### Communicated by Enzo Mitidieri

Keywords: Elliptic equation Liouville problem Singularly perturbed problem Lyapunov–Schmidt reduction

#### ABSTRACT

We study the following boundary value problem

$$\begin{cases} \Delta u + \lambda a(x)u^{p-1}e^{u^p} = 0, & u > 0 & \text{in } \Omega; \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
 (0.1)

where  $\Omega$  is a bounded domain in  $\mathbb{R}^2$  with smooth boundary,  $\lambda > 0$  is a small parameter, the function  $a(x) \geq 0$  is a smooth potential, and the exponent p satisfies 0 . We construct a family of solutions to problem <math>(0.1) which blows up, as  $\lambda \to 0$ , at some points of  $\Omega$  which stay outside the zero set of a(x). We relate the number of possible blow-up points with the zero set of a(x).

© 2014 Elsevier Ltd. All rights reserved.

### 1. Introduction

We consider the following boundary value problem

$$\begin{cases} \Delta u + \lambda a(x)u^{p-1}e^{u^p} = 0, & u > 0 & \text{in } \Omega; \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where  $\Omega$  is a bounded domain in  $\mathbb{R}^2$  with smooth boundary,  $\lambda > 0$  is a small parameter and  $0 . The function <math>a(x) \geq 0$  is smooth in  $\Omega$ . This problem is the Euler–Lagrange equation for the functional

$$J_{a,\lambda}^{p}(u) = \frac{1}{2} \int_{\Omega} |\nabla u(x)|^{2} dx - \frac{\lambda}{p} \int_{\Omega} a(x) e^{u^{p}} dx, \quad u \in H_{0}^{1}(\Omega).$$

$$(1.2)$$

If  $a(x) \equiv 1$ , problem (1.1) becomes

$$\begin{cases} \Delta u + \lambda u^{p-1} e^{u^p} = 0, & u > 0 & \text{in } \Omega; \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
 (1.3)

This problem has been studied widely in the literature when p=1. The asymptotic behavior of blowing up families of solutions can be referred to [1,4,13–16]: in these works it has been established that if  $u_{\lambda}$  is an unbounded family of solutions

E-mail addresses: shbdeng65@gmail.com (S. Deng), dggarrido@mat.puc.cl (D. Garrido), mmusso@mat.puc.cl (M. Musso).

<sup>&</sup>lt;sup>a</sup> School of Mathematics and Statistics, Southwest University, Chongqing 400715, PR China

<sup>&</sup>lt;sup>b</sup> Departamento de Matemática, Pontificia Universidad Catolica de Chile, Avda. Vicuña Mackenna 4860, Macul, Chile

<sup>\*</sup> Corresponding author.

to (1.3) for which  $\lambda \int_{\Omega} e^{u_{\lambda}}$  remains uniformly bounded as  $\lambda \to 0$ , then there exists an integer K such that

$$\lambda \int_{\Omega} e^{u_{\lambda}} dx \to 8\pi K$$
, as  $\lambda \to 0$ .

Moreover there are K points  $\xi_1, \ldots, \xi_K$  in  $\Omega$ , which are far away from the boundary of  $\Omega$  and far away from each other, so

$$\lambda e^{u_{\lambda}} \rightarrow \sum_{i=1}^K \delta_{\xi_j}$$

in the sense of measure. Furthermore, the location of the point  $\xi = (\xi_1, \dots, \xi_K)$  is known to be related to the critical points of the function

$$\Phi_K(\xi) = \sum_{j=1}^K H(\xi_j, \xi_j) + \sum_{i \neq j}^K G(\xi_i, \xi_j).$$

Here G(x, y) denotes Green's function for the negative Laplacian with Dirichlet boundary condition in  $\Omega$ , namely

$$\begin{cases} -\Delta_x G(x, y) = \delta_y(x) & x \in \Omega; \\ G(x, y) = 0 & x \in \partial\Omega, \end{cases}$$
(1.4)

and H(x, y) its regular part, given by

$$H(x, y) = G(x, y) - \frac{1}{2\pi} \log \frac{1}{|x - y|}.$$
 (1.5)

Concerning the reciprocal issue, several results are already known in the literature, we refer to [1,10,7]. In particular, in [7] del Pino-Kowalczyk-Musso constructed bubbling solutions to problem (1.3) when p = 1. They showed that: If the domain  $\Omega$  is not simply connected, and given any integer  $K \geq 1$ , there exist K points  $\xi_1, \ldots, \xi_K$  in  $\Omega$  and a family of solutions  $u_{\lambda}$ , for any  $\lambda$  sufficiently small, which blows up at these K points in the sense that, as  $\lambda \to 0$ 

$$\sup_{x \in \Omega \setminus \cup_{i=1}^K B(\xi_j, \delta)} u_{\lambda}(x) \to 0, \quad \text{and for any } j = 1, \dots, K, \qquad \sup_{x \in B(\xi_j, \delta)} u_{\lambda}(x) \to \infty$$

for any positive fixed number  $\delta$ . Furthermore,

$$\int_{\Omega} \lambda e^{u_{\lambda}} dx \to 8K\pi \quad \text{as } \lambda \to 0.$$

The location of these blow-up points  $\xi_1, \ldots, \xi_K$  is not arbitrary: indeed they correspond to critical points of the function  $\Phi_K$ defined above.

The results have been extended in [9] for the whole range of values of exponents p with 0 . This result wassurprising, since the scenario changes completely when p = 2: this situation was previously treated in [8].

In this paper, we construct bubbling solutions to Problem (1.1), with a non negative nontrivial potential. When p=1, this situation was already treated in [7], under the condition that the concentration points  $(\xi_1, \ldots, \xi_K)$  belong to a region where the potential a is strictly positive. Our first result shows that this construction can be done for the whole range of exponents 0 .

Before stating our result, it is useful to introduce some notations. For an integer  $K \ge 1$  and K distinct points  $\xi_i$ , j = 1 $1,\ldots,K$ , in  $\Omega$ , separated uniformly from each other and from the boundary  $\partial\Omega$ , write  $\xi=(\xi_1,\ldots,\xi_K)$ , let us define the following functional

$$\Phi_{a,K}^{p}(\xi) = \sum_{j=1}^{K} H(\xi_j, \xi_j) + \sum_{i \neq j}^{K} G(\xi_i, \xi_j) + \frac{2-p}{4p\pi} \sum_{j=1}^{K} \log a(\xi_j).$$
 (1.6)

**Definition 1.1.** We say that  $\xi$  is a  $C^0$ -stable critical point of  $\varphi : \mathcal{M} \to \mathbb{R}$  if for any sequence of functions  $\varphi_n : \mathcal{M} \to \mathbb{R}$  such that  $\varphi_n \to \varphi$  uniformly on compact sets of  $\mathcal{M}$ ,  $\varphi_n$  has a critical point  $\xi^n$  such that  $\varphi_n(\xi^n) \to \varphi(\xi)$ . In particular, if  $\xi$  is a strict local minimum or maximum point of  $\varphi$ , then  $\xi$  is  $C^0$ -stable critical point.

Let  $\varepsilon$  be a parameter, which depends on  $\lambda$ , defined as

$$p\lambda \left(-\frac{4}{p}\log\varepsilon\right)^{\frac{2(p-1)}{p}}\varepsilon^{\frac{2(p-2)}{p}} = 1. \tag{1.7}$$

Observe that, as  $\lambda \to 0$ , then  $\varepsilon \to 0$ , and  $\lambda = \varepsilon^2$  if p = 1.

## Download English Version:

# https://daneshyari.com/en/article/839643

Download Persian Version:

https://daneshyari.com/article/839643

Daneshyari.com