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a b s t r a c t

Weprove existence and uniqueness of viscosity solutions to second order degenerate ellip-
tic equations which are continuous or jump discontinuous on some interior surface. More-
over, we derive sharp conditions for Lipschitz regularity or gradient blowup of the viscosity
solutions on such a surface.
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1. Introduction and model equation

Let us consider the following simple example [15]

−u′′(x)− 18x(u′(x))4 = 0 in (−1, 1) (1.1)
u(−1) = −B, u(1) = B, B ≥ 0.

One can easily check that for 0 < B < 1 problem (1.1) has a unique classical solution u(x) ∈ C2([−1, 1]). However, for
B = 1 the unique viscosity solution is u(x) =

3
√
x, while for B > 1 there is no longer a continuous viscosity solution of (1.1).

The functions ũ and ṽ given by

ũ =


3√x − 1 + B for 0 ≤ x ≤ 1
3√x + 1 − B for − 1 ≤ x < 0

ṽ =


3√x − 1 + B for 0 < x ≤ 1
3√x + 1 − B for − 1 ≤ x ≤ 0

differ only in the origin, ũ ∈ USC([−1, 1]), ṽ ∈ LSC([−1, 1]), are viscosity sub- and supersolutions of (1.1) for B > 1. They
are equal at the boundary, but sup[−1,1](ũ− ṽ) = ũ(0)− ṽ(0) = 2(B−1) > 0 and the comparison principle fails for problem
(1.1) (see Fig. 1).

From the theory of viscosity solutions [9] it is well known that the Perron method, without comparison principle for the
semicontinuous viscosity sub- and supersolutions, can in general produce discontinuous solutions. For the time being, there
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Fig. 1. Solutions with a transition layer and discontinuity at zero.

is a notion of discontinuous viscosity solutions for second order elliptic equations which says that u is a (discontinuous)
viscosity solution of

F(x, u,Du,D2u) = 0 inΩ ⊂ Rn (1.2)
u = ψ on ∂Ω (1.3)

iff u∗ is a viscosity subsolution and u∗ is a viscosity supersolution of (1.2) (see [1,4,3], [10, Sec. 6]). Here u∗ and u∗ are the
upper and lower semicontinuous envelopes of u defined by

u∗(x) = lim
ε↓0

inf{u(y) : |x − y| ≤ ε}, u∗(x) = lim
ε↓0

sup{u(y) : |x − y| ≤ ε}.

According to this definition the function ua(x) =
3
√
x − 1 + B for 0 < x ≤ 1, ua(x) =

3
√
x + 1 − B for −1 ≤ x < 0

and ua(0) = a (B > 1, 1 − B < a < B − 1) is a (discontinuous) viscosity solution for every such choice of a. In fact
(ua)

∗
= ũ, (ua)∗ = ṽ and as noted above they are viscosity sub- and supersolution.

Unfortunately problem (1.1) has infinitely many viscosity solutions ua, namely one for every a ∈ [1 − B, B − 1]
satisfying ua(0) = a. In order to overcome the difficulties with the non uniqueness of the notion of discontinuous viscosity
solutions our first approach in [14] was to define the viscosity solution as a multivalued function adding the whole interval
[−B+1, B−1] at the origin for problem (1.1). In this way all problems with the validity of the comparison principle, or non
uniqueness of the solution will be overcome. The heuristic argument is to rotate the coordinate system in π/2 so that the
x-variable to be the new dependent variable and u becomes the new independent variable. Now the function x(u) is well
defined and flat near the origin. Unfortunately, the calculations are very complicated and only the mean curvature operator
is invariant. Moreover, this solution is not stable under small perturbations of the coefficients of the equation.

In order to motivate our second approach in [16] let us consider the same example (1.1) when B < 0. For 1

−1
(27(1 − t2))−

1
3 dt =: −2B∗ ≥ −2B

(1.1) has a unique classical solution u ∈ C2(−1, 1) ∩ C([−1, 1])which satisfies the boundary data in classical sense

u(x) = −B +

 x

−1
[k−3

− 27(1 − t2)]−
1
3 dt, k = u′(−1).

If −B > −B∗ then (1.1) has only viscosity solutions with infinite slope on the boundary

uC (x) = C −

 x

−1
[27(1 − t2)]−

1
3 dt, C = const, − B ≥ C ≥ B

(see Fig. 2).
More precisely uC (x) ∈ C2(−1, 1)∩C([−1, 1]), but the solution satisfies the Dirichlet conditions only inweak (viscosity)

sense (see Section 7 in [9]).
Note that the comparison principle still holds for monotone decreasing viscosity sub- and supersolutions from Theorem

2.6 in [15] (see also [2]).
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