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a b s t r a c t

We extend the global compactness result by Struwe (1984) to any fractional Sobolev
spaces Ḣs(Ω), for 0 < s < N/2 and Ω ⊂ RN a bounded domain with smooth boundary.
The proof is a simple direct consequence of the so-called profile decomposition of Gérard
(1998).
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1. Introduction

Since the seminal paper [17], global compactness properties for Palais–Smale sequences in the Sobolev space H1 have
become very important tools in Nonlinear Analysis which have been crucial in many existence results, e.g. for ground states
and blow-up solutions for nonlinear Schrödinger equations, for solutions of Yamabe-type equations both in conformal and
in CR geometry, for prescribing Q -curvature problems, etc. Together with the aforementioned examples concerning single
equations in a scalar unknown function, more difficult systems of PDEs, often related to other geometric problems, share
similar compactness properties for their solutions; for instance, this is the case for parametric surfaces of constant mean
curvature, harmonicmaps from Riemann surfaces into Riemannianmanifolds, Yang–Mills connections over four-manifolds,
pseudo-holomorphic curves into symplectic manifolds, planar Toda systems, etc. The involved literature is really too wide
to attempt any reasonable account here.

In the present note, we aim to extend the global compactness result by M. Struwe for semilinear elliptic equation in H1
0

to the case of fractional Sobolev spaces Ḣs of any real differentiability order 0 < s < N/2 by means of the so-called profile
decomposition first obtained in [9] (see also [13] for an alternative slightly simpler and more abstract approach).
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Let N ≥ 1 and for each 0 < s < N/2 denote by Ḣs(RN) the usual L2-based homogeneous fractional Sobolev spaces1
defined via Fourier transform as the completion of C∞

0 (R
N) under the norm

∥u∥2
Ḣs =


RN

|ξ |2s|û(ξ)|2 dξ . (1.1)

In view of the well known critical Sobolev embedding Ḣs ↩→ L2
∗

, where 2∗
= 2N/(N − 2s) is the critical Sobolev exponent,

one has equivalently,

Ḣs(RN) =


u ∈ L2

∗

(RN) s.t. (−∆)s/2u ∈ L2(RN)

,

where, by definition, ((−∆)s/2u)(ξ) := |ξ |sû(ξ).
LetΩ be a bounded domain in RN with smooth boundary, N ≥ 1, and define the homogeneous Sobolev space Ḣs(Ω) as

the completion of C∞

0 (Ω) under the norm (1.1), hence a closed subspace of Ḣs(RN). Thus, we have a well defined fractional
Laplacian (−∆)s : Ḣs(Ω) → (Ḣs(Ω))′ which is a bounded linear operator (isomorphism) given by ((−∆)su)(ξ) :=

|ξ |2sû(ξ), so that ⟨v, (−∆)su⟩H,H ′ = (v, u)H for any u, v ∈ H = Ḣs(Ω).
Since in the entire space Ḣs ↩→ L2loc with compact embedding, we also have Ḣs(Ω) ↩→ L2(Ω) ↩→ (Ḣs(Ω))′, both with

compact embedding. As a consequence, there is a well defined first eigenvalue λ1 = min

∥u∥2

Ḣs : u ∈ Ḣs(Ω), ∥u∥L2 = 1

,

with λ1 = λ1(Ω) > 0 and also corresponding eigenfunctions (which are positive and simple when s ≤ 1; see, e.g.,
[7, Theorem 4.2]). Similarly, one has an increasing sequence of positive eigenvalues (repeated with multiplicities) going
to infinity 0 < λ1 ≤ λ2 ≤ · · · and corresponding eigenfunctions v1, v2, . . . giving an orthogonal base both of L2(Ω) and of
Ḣs(Ω), so that (−∆)svk = λkvk in (Ḣs(Ω))′ for any integer k ≥ 1, i.e. (vk, u)H = λk(vk, u)L2 for any u ∈ Ḣs(Ω). Indeed it is
enough to write (u, v)L2 = (Ku, v)Ḣs for some K ∈ L(Ḣs)which is compact and self-adjoint and apply the spectral theorem.

For any fixed λ ∈ R, consider the following nonlinear problem

(−∆)su − λu − |u|2
∗
−2u = 0 in (Ḣs(Ω))′, (Pλ)

i.e. the Euler–Lagrange equation dE(u) = 0 corresponding to the differentiable functional

E(u) =
1
2


RN

(−∆) s
2 u
2 dx −

λ

2


Ω

|u|2dx −
1
2∗


Ω

|u|2
∗

dx. (1.2)

It is worth noticing that when λ < λ1, although the functional possesses the Mountain Pass geometry (arguing as in
[18, Chapter II, Section 6]), the celebrated Mountain Pass lemma does not apply because the Palais–Smale condition fails.
More generally, when λk < λ < λk+1 the functional has a linking geometry (using the spectral decomposition above and
arguing again as in [18, Chapter II, Section 8]) but the usual minimax scheme still cannot be applied for the same reason.
As it is well known when s = 1, this is due to the presence of a limiting nonlinearity in (1.2) and it is related to the lack
of compactness for the associated critical Sobolev embedding Ḣs ↩→ L2

∗

, which is a consequence of the invariance of the
Ḣs- and L2

∗

-norms with respect to the scaling

u(·)  ũx0,η(·) = η
2s−N

2 u


· − x0
η


, (1.3)

for arbitrarily fixed η > 0 and x0 ∈ RN .
In the seminal paper [3] the authors circumvent this difficulty proving that, for s = 1, a local (PS)-condition holds for

λ < λ1 small enough. Soon after a decisive breakthrough was obtained in [17], still in the local case s = 1, describing
the precise mechanism responsible for the lack of the (PS)-condition; i.e., in Author’s words, proving that compactness for
Palais–Smale sequences holds ‘‘apart from jumps of the topological type of admissible functions’’, a sense we will make precise
below. This major advance paved the way to several extensions and to a huge number of applications, e.g. in the case of
problems involving biharmonic and polyharmonic operators but also in other more complicated problems (see e.g. [18,19]
and the references therein).

In order to state precisely our main result, consider the following limiting problem

(−∆)su − |u|2
∗
−2u = 0 in (Ḣs(Ω0))

′, (P0)

whereΩ0 is either the whole RN or a half-space; i.e. the Euler–Lagrange equation dE∗(u) = 0 corresponding to the energy
functional E∗

: Ḣs(Ω0) → R,

E∗(u) =
1
2


RN

(−∆) s
2 u
2 dx −

1
2∗


Ω0

|u|2
∗

dx. (1.4)

We have the following extension of the result in [17], describing Palais–Smale sequences for (1.2) in the full range 0 < s <
N/2,

1 For further details on the fractional Sobolev spaces, we refer to [4] and the references therein.
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