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a b s t r a c t

We show stability of spherical caps (SCs) lying on a flat surface, where the motion is
governed by the volume-preserving Mean Curvature Flow (MCF). Moreover, we introduce
a dynamic boundary condition that models a line tension effect on the boundary. The proof
is based on the generalized principle of linearized stability.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The geometric evolution law VΓ = HΓ , meaning that the motion of a point on the surface in normal direction VΓ is equal
to the mean curvature of the surface in that point, has many applications in geometry, physics and materials science. For
example the evolution of grain boundaries is governed by mean curvature flow. First important results by mean curvature
flow are due to Brakke [5], Gage andHamilton [14] andHuisken [18]. The flowVΓ = HΓ is known as themean curvature flow
(MCF) and with the additional condition of volume conservation, this flow appears e.g. as a model for surface attachment
limited kinetics (SALK), see e.g. Cahn and Taylor [6]. In 1987 it was Huisken [19] and in 1998 Escher and Simonett [12], who
provided important results concerning the volume-preservingMCF. Volume preservingmean curvature flow of rotationally
symmetric surfaces with boundary contact has been studied by Athanassenas [2], see also the recent work [3]. Stability of
cylinders under volume preservingmean curvature flowwith a 90-degree angle condition at an external boundary has been
studied by Hartley [16].

This paper is devoted to stability of spherical caps in R3 that lie on a flat surface R2
× {0}. Modeling a drop of liquid

or a soap bubble physics suggest that the air–liquid-interface, which can be viewed as an evolving hypersurface, tends to
minimize its area. If such a surface gets into contact with some fixed impermeable boundary layer the mass conservation
law makes it necessary to demand a constant volume condition. The occurring contact angle is mainly determined by the

∗ Corresponding author.
E-mail addresses: helmut.abels@mathematik.uni-regensburg.de (H. Abels), harald.garcke@mathematik.uni-regensburg.de (H. Garcke).

http://dx.doi.org/10.1016/j.na.2014.11.020
0362-546X/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.na.2014.11.020
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2014.11.020&domain=pdf
mailto:helmut.abels@mathematik.uni-regensburg.de
mailto:harald.garcke@mathematik.uni-regensburg.de
http://dx.doi.org/10.1016/j.na.2014.11.020


H. Abels et al. / Nonlinear Analysis 117 (2015) 8–37 9

Fig. 1. Evolving hypersurface Γ (t) in contact with a container boundary ∂Ω .

material constants and thereby the wettability of the container. The free energy is given as

E(Γ ) :=


Γ

1 dH2
−


D
a dH2

where dHd, d ∈ {1, 2} denotes integration with respect to the d-dimensional Hausdorff measure, a > 0 is a constant and
D is the wetted region. The first term measures surface energy and the second term accounts for contact energy. Then the
angle α at the junction line is determined by cosα = −a, see Fig. 2 and Finn [13]. We remark that the contact angle, which
is typically used in physics, is given as γ = π − α. However, in particular on small length scales, a second effect is entering
the scenery, namely the line tension (cf. Section 1 of [4]). This effect penalizes long contact curves and forces the drop or
bubble to detach more from the boundary. The governing energy for a hypersurface Γ ⊆ R3 with contact to R2

× {0} is in
this case given as

F (Γ ) :=


Γ

1 dH2
−


D
a dH2

+


∂Γ

b dH1,

where b > 0 is a constant. The last term accounts for line energy effects. For a mathematical treatment of variational
problems related to F we refer to Morgan [24,25], Morgan and Taylor [26] and Cook [7]. The motion of such an evolving
hypersurface Γ , which is schematically illustrated in Fig. 1, will be a suitable gradient flow of the energy F .

During this motion it seems artificial to prescribe the boundary curve or the contact angle, since an arbitrary drop or
bubble, which is brought in contact with a solid container, will not instantly have a boundary curve or contact angle that
is energetically minimal. Prescribing the contact curve or the contact angle would correspond to Dirichlet or Neumann
boundary conditions, respectively. Instead of doing so, we will impose dynamic boundary conditions to allow the contact
angle to change and the boundary curve tomove.Wewill prove stability for spherical caps, which are the simplest stationary
surfaces of the given flow. It will turn out that the set of equilibria forms a three-dimensional manifold. This is due to the
fact that we have two degrees of freedomwith respect to horizontal translations and another degree of freedom stems from
a change in the enclosed volume. As a consequence the classical theory of linearized stability does not apply and we have
to use the generalized principle of linearized stability as introduced by Prüss, Simonett and Zacher in [30].

After some elementary results on spherical caps in Section 2, we will introduce in Section 3 the generalized principle of
linearized stability, which is the basis of our stability analysis. We will also introduce the abstract setting concerning the
involved operators and spaces. Before we can apply the principle in Section 5 by checking the four assumptions that are
needed and formulate our final stability result in Theorem 5.13, we need some perturbation result from semigroup theory
to deal with the non-locality of the volume-preserving MCF in Section 4. In order to show stability of stationary solutions
we in particular need to study the spectrum of the surface Laplacian on the spherical cap with non-standard boundary
conditions.

2. Spherical caps

We want to consider the motion of an evolving hypersurface Γ = (Γ (t))t∈I inside the upper half space Ω := R3
+

:=

{(x, y, z) ∈ R3
| z > 0}, which remains in contact with the boundary ∂Ω given as the x-y-plane. With U ⊆ Ω we want to

denote the region between Γ and ∂Ω and D shall be defined as D := ∂U ∩ ∂Ω . In particular, we have ∂D = ∂Γ . For a point
p ∈ Γ we denote the exterior normal to Γ in p by nΓ (p), where the term ‘‘exterior’’ should be understood with respect to
U . Obviously, the normal nD of U on D is the negative of the third unit vector. Furthermore, for a point p ∈ ∂Γ we want to
denote by n∂Γ and n∂D the outer conormals to ∂Γ and ∂D in p. In addition, we define the tangent vector to the curve ∂Γ by

τ⃗ (p) :=
c′(t)
|c′(t)| and its curvature vector by ~⃗(p) :=

1
|c′(t)|


c′(t)
|c′(t)|

′

, where c : (t − ε, t + ε) −→ ∂Γ is a parametrization of
∂Γ around p ∈ ∂Γ with c(t) = p.

For two parameters a ∈ R and b > 0 the motion of Γ shall be driven by the volume-preserving mean curvature flow
with a dynamic boundary condition

VΓ (t) = HΓ (t) − H(t), (2.1)
v∂D(t) = a + b~∂D(t) + cos(α(t)). (2.2)
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