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a b s t r a c t

Let (M, F) be an n-dimensional compact Finsler manifold without boundary or with a con-
vex boundary and λ1 be the first (nonzero) closed or Neumann eigenvalue of the Finsler
Laplacian on M with nonnegative weighted Ricci curvature. In this paper, we prove that
λ1 ≥

π2

d2
, where d is the diameter of M , and that the equality holds if and only if M is a 1-

dimensional circle or a 1-dimensional segment, which generalize the well-known Zhong–
Yang’s sharp estimate in Riemannian geometry (Zhong and Yang, 1984).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the lower bound of the first (nonzero) eigenvalue of Laplacian on Riemannian manifolds has a long history.
For example, see Lichnerowicz [6], Obata [8], Cheeger [2], Li–Yau [5], and so on. For an overview, the reader is referred to
the introduction of [1] and Chapter 3 in book [12], and references therein.

As a generalization of Riemannian geometry, Finsler geometry has been receivedmore andmore attentions recently since
it hasmore andmore applications in natural science. A Finslermanifold (Mn, F)means an n-dimensional smooth differential
manifold equipped with a Finsler metric F : TM \ {0} → [0;+∞) (see details in Section 2). On a Finsler manifold (M, F),
the Laplace operator (often called the Finsler Laplacian) was introduced by Z. Shen via a variation of the energy functional
(cf. [13,14]). If F is Riemannian, then the Finsler Laplacian is exactly the usual Laplacian. Unlike the usual Laplacian, the
Finsler Laplacian is a nonlinear elliptic operator. The standard linear elliptic theory cannot be directly applied to the Finsler
Laplacian. In spite of this, some progress has been made on the global analysis on Finsler manifolds in recent years [3,10,11,
19,21]. In particular, inspired by the method of the gradient comparison developed in [1], G. Wang and C. Xia gave a sharp
lower bound for the first eigenvalue of the Finsler Laplacian on a compact Riemannian manifold without boundary or with
convex boundary, whose weighted Ricci curvature RicN is bounded below from a real number K , where N ∈ [n,∞].

Based on Wang–Xia’s result (see Proposition 3.1 in Section 3), we can get a unified lower bound for the first closed or
Neumann eigenvalue of the Finsler Laplacian if RicciN ≥ K for some real numbersN ∈ [n,∞] and K ∈ R. Explicitly, we have

Theorem 1.1. Let (Mn, F ,m) be an n-dimensional compact Finsler manifold, equipped with a Finsler structure F and a smooth
measure m, without boundary or with a convex boundary. Assume that RicN ≥ K for some real numbers N ∈ [n,∞] and K ∈ R.
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Let λ1 be the first (nonzero) closed or Neumann eigenvalue for the Finsler Laplacian, i.e.,

∆mu = −λ1u, in M (1.1)

with the Neumann boundary condition

∇u ∈ Tx(∂M), (1.2)

if ∂M is not empty. Then

λ1 ≥ sup
s∈(0,1)


4s(1− s)

π2

d2
+ sK


, (1.3)

where d is the diameter of M.

The precise definition of the Finsler manifold, convex boundary, diameter, weighted Ricci curvature RicN , Finsler-

Laplacian and the first eigenvalue, etc. will be given in Section 2. Note that d ≤ π


N−1
K if K > 0 by Theorem 7.3 in [9]. By a

direct calculation, it is easy to see that

sup
s∈(0,1)


4s(1− s)

π2

d2
+ sK


=


0, if Kd2 < −4π2,

π

d
+

Kd
4π

2

, if Kd2 ∈ [−4π2, 4π2
],

K , if Kd2 ∈

4π2,

N − 1
K

π2


.

(1.4)

In particular, if K = 0, then the right side in (1.3) arrives the maximum π2

d2
. In this case, λ1 ≥

π2

d2
, which is optimal in the

sense of Theorem 1.2. If F is Riemannian, then Theorem 1.1 is reduced to Theorem 1.1 in [15].

Theorem 1.2. Let (Mn, F ,m), λ1 and d be the same as in Theorem 1.1. Assume the weighted Ricci curvature RicN of M is nonneg-
ative for N ∈ [n,∞]. Then λ1 ≥

π2

d2
and the equality holds if and only if M is a 1-dimensional segment or 1-dimensional circle.

In particular, if (Mn, F) is a Riemannian manifold without boundary or with a convex boundary, then Theorem 1.2 is
reduced to Zhong–Yang and Hang–Wang’s results, which asserted that λ1(Mn) ≥ π2

d2
if M has nonnegative Ricci curva-

ture and the equality holds if and only if M is a 1-dimensional circle or 1-dimensional segment [4,22]. In Finslerian case,
the authors considered the optimal lower bound for the first eigenvalue on compact Finsler manifolds with nonnegative
∞-weighted Ricci curvature Ricci∞ under some extra assumptions in [20]. Thus, Theorem 1.2 extends Zhong–Yang’s well
known sharp estimate in Riemannian case and Yin–He–Shen’s result in Finslerian case. It is worthmentioning that the proof
of Theorem 1.2 is not based on the gradient estimate of the eigenfunctions, which was used in [20,22], but on a comparison
theorem on the gradient of the first eigenfunction with that of a one dimensional model function, which was given in [19].

This paper is organized as follows. In Section 2, we briefly review the necessary preliminaries on Finsler geometry. In
Section 3, we prove Theorem 1.1. Moreover, as a special case of Theorem 1.1, one obtains that the lower bound estimate
for the first eigenvalue on Finsler manifolds with nonnegative weighted Ricci curvature. We will give another proof of this
estimate and meanwhile determine the necessary condition for which the equality holds (see Theorem 3.1). Finally, we
characterize the equality in Theorem 3.1 and prove Theorem 1.2.

2. Finsler geometry

In this section, we briefly recall some fundamental concepts in Finsler geometry. For more details, we refer to [9–11,13,
19], etc.

2.1. Finsler metric

Let M be an n-dimensional smooth manifold. A Finsler structure (or Finsler metric F ) on M means a function F : TM →
[0,∞) with the following properties: (1) F is C∞ on TM \ {0}; (2) F(x, λy) = λF(x, y) for any (x, y) ∈ TM and all λ > 0;
(3) the matrix (gij(x, y)) = (

∂2F(x,y)
∂yi∂yj

) is positive. Such a pair (M, F) is called a Finsler manifold. A Finsler structure F is said to
be reversible if F(x,−y) = F(x, y). Otherwise, F is non-reversible.

For x1, x2 ∈ M , the distance function from x1 to x2 is defined by

d(x1, x2) := inf
γ

 1

0
F(γ̇ (t))dt,

where the infimum is taken over all C1 curves γ : [0, 1] → M such that γ (0) = x1 and γ (1) = x2. Note that the distance
function may not be symmetric unless F is reversible. The diameter ofM is defined by

d := sup
x,y∈M

d(x, y).
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