Morse indices of solutions for super-linear elliptic PDE's

Hatem Hajlaoui ${ }^{\text {a }}$, Abdellaziz Harrabi ${ }^{\text {b }}$, Foued Mtiri ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Institut Préparatoire aux Etudes d'Ingénieurs. Université de Kairouan, Tunisia
${ }^{\mathrm{b}}$ Institut de Mathématiques Appliquées et d'Informatiques. Université de Kairouan, Tunisia
${ }^{\text {c }}$ Institut Élie Cartan de Lorraine, UMR 7122, Université de Lorraine-Metz, 57045 Metz, France

A R T I C L E IN F O

Article history:

Received 28 June 2014
Accepted 4 January 2015
Communicated by S. Carl
In memory of Professor Miguel Ramos

Keywords:

Morse index
Elliptic estimates
Pohozaev identity

Abstract

In this paper, we establish L^{∞} estimates for solutions of some general superlinear and subcritical elliptic equations via the Morse index. Our results generalize and improve the previous works (Bahri and Lions, 1992; Yang, 1998).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following elliptic problem with Dirichlet boundary condition

$$
\begin{cases}-\Delta u=f(x, u) & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}(N>2)$ is a smooth bounded domain and f is a $C^{1}(\Omega \times \mathbb{R})$ function that we will specify later. Let u be a classical solution, define

$$
\begin{equation*}
\Lambda_{u}(h):=\int_{\Omega}|\nabla h|^{2}-\int_{\Omega} f^{\prime}(x, u) h^{2}, \quad \forall h \in C_{c}^{1}(\Omega) . \tag{1.2}
\end{equation*}
$$

Here $f^{\prime}(x, t):=\frac{\partial f}{\partial t}(x, t)$. The Morse index of $u, i(u)$, is defined as the maximal dimension of all subspaces X of $C_{c}^{1}(\Omega)$ such that $\Lambda_{u}(h)<0$ for any $h \in X \backslash\{0\}$. A solution u is said stable if $i(u)=0$.

By using the symmetric Mountain Pass theorem, Ambrosetti and Rabinowitz in [1] showed that when f is super-linear, odd in u and has a subcritical growth, Eq. (1.1) has infinitely many solutions u_{k} such that $\lim _{k \rightarrow \infty} i\left(u_{k}\right)=\lim _{k \rightarrow \infty}\left\|u_{k}\right\|_{L} \infty=$ ∞ (see also [5,20] for more general results). In the celebrated paper [2], Bahri and Lions studied the perturbed equation i.e. $f(x, u):=|u|^{p-2} u+g(x, u)$ where $2<p<\frac{2 N-2}{N-2}$ and $g(x, u)$ is not assumed to be odd in u. They proved the existence of infinitely many solutions under appropriate growth restriction on g. This result was improved by Ramos, Tavares and Zou [18], using the Morse index of solutions for unperturbed problem, they obtained a sequence of sign-changing solutions to a more

[^0]general problem. In [9], de Figueiredo and Yang also considered problem (1.1) where the associated Euler-Lagrange functional does not satisfy the Palais-Smale condition. Variational and blow-up techniques were applied together with Morse's index to derive existence results (see also [17,23]).

The idea of using the Morse index of solutions to obtain further qualitative properties of solutions to a semilinear elliptic equations was first explored in the subcritical case by Bahri and Lions in [3]. They proved

Theorem 1.1 ([3]). Assume that f satisfies:

$$
f^{\prime}(x, s)|s|^{-p+1} \rightarrow c(x)>0 \quad \text { uniformly on } \Omega, \text { as } s \rightarrow \pm \infty
$$

where $c \in C(\bar{\Omega})$ and $1<p<\frac{N+2}{N-2}$, then for any sequence of solutions u_{n} to (1.1),

$$
i\left(u_{n}\right) \rightarrow \infty \quad \text { if and only if }\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \rightarrow \infty
$$

Suppose that $\left\|u_{n}\right\|_{L^{\infty}} \rightarrow \infty$ while $i\left(u_{n}\right)$ remains bounded, by blow-up technique, Bahri and Lions obtained a nontrivial bounded solution having finite Morse indices in the whole space or in the half space with Dirichlet conditions for the Lane-Emden equation:

$$
\begin{equation*}
-\Delta u=|u|^{p-1} u \tag{1.3}
\end{equation*}
$$

On the other hand, a spectral argument combined with the Pohozaev identity showed that $u \equiv 0$, hence the contradiction.
In [15], the authors extended Theorem 1.1 when f does not have the same asymptotic behavior at $+\infty$ and $-\infty$, namely f satisfies the following assumption
(H) $f^{\prime}(x, t) \sim p^{+} t^{p^{+}-1} \quad$ at $+\infty, \quad f^{\prime}(x, t) \sim p^{-}|t|^{p^{-}-1} \quad$ at $-\infty$, uniformly in x,
with $p^{-} \neq p^{+}$satisfying $p^{-}, p^{+} \in\left(1, \frac{N+2}{N-2}\right)$, if $N \geq 4$ and $p^{-}, p^{+} \in(2,5)$ if $N=3$. The proof in [15] is harder than [3], since the "blow-up" argument leads to deal with $-\Delta u=u_{+}^{p}$. They had to use the classification result in [14] together with Harnack's inequality and barrier functions estimates.

In the supercritical case, Theorem 1.1 was first extended by Dancer [7] with the restriction $\frac{N+2}{N-2}<p<\frac{N}{N-4}$ if $N \geq 4$. In an elegant paper, Farina [11] obtained a sharp classification for all finite Morse indices solutions of (1.3) (see also [10]). This classification is useful to prove Theorem 1.1 when $1<p<p_{c}(N)$, where $p_{c}(N)$ is the so-called Joseph-Lundgren exponent, which is much bigger than $\frac{N+2}{N-2}$. After that, using Harnack's inequality and combining with similar L^{p}-estimates derived in [11], Rebhi extended the result of [15] up to the optimal exponent $p_{c}(N)$ [19]. In [8], Davilla, Dupaigne and Farina considered Eq. (1.3) in a general open set $\Omega \subset \mathbb{R}^{N}$, without any boundary conditions. By a boot-strap technique, the authors proved some regularity results for weak solutions in $H_{\mathrm{loc}}^{1}(\Omega) \cap L_{\mathrm{loc}}^{p}(\Omega)$ with finite Morse index, and they provided a universal estimate for classical solutions of $-\Delta u=f(u)$ in Ω, where f has an asymptotical behavior like $|s|^{p-1} s$ at infinity.

Motivated by [3], based on local interior estimates and careful boundary estimates, Yang obtained in [22] some explicit estimates of L^{p} or L^{∞} norm for solutions to (1.1) via their Morse index. In particular, under weaker conditions than [3], Yang controlled the L^{p} or L^{∞} norm of solution by polynomial growth in Morse index. More precisely, consider the following conditions:
(H_{1}) (Super-linearity) There exists $\mu>0$ such that

$$
f^{\prime}(x, s) s^{2} \geq(1+\mu) f(x, s) s>0, \quad \text { if }|s|>s_{0}, x \in \Omega
$$

$\left(\mathrm{H}_{2}\right)$ (Subcritical growth) There exists $0<\theta<1$ such that

$$
\frac{2 N}{N-2} F(x, s) \geq(1+\theta) f(x, s) s, \quad \text { if }|s|>s_{0}, x \in \Omega
$$

where $F(x, s)=\int_{0}^{t} f(x, t) d t$.
$\left(\mathrm{H}_{3}\right)$ There is a constant $\mathrm{C} \geq 0$ such that

$$
\left|\nabla_{x} F(x, s)\right| \leq C(F(x, s)+1), \quad x \in \Omega .
$$

Yang proved then
Theorem 1.2 (Theorems 2.1-2.2 in [22]). If $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is a solution of (1.1) and f satisfies $\left(\mathrm{H}_{1}\right)$, $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$, then there exists a positive constant $C=C(\Omega, f)$ such that

- $\int_{\Omega}|f(x, u)|^{p_{0}} \leq C(i(u)+1)^{\alpha}$ where $p_{0}=1+\frac{(1+\theta)(N-2)}{(1-\theta) N+2(1+\theta)}$ and $\alpha=\left(\frac{3}{2}+\frac{3}{2+\mu}\right) \frac{(2+\mu)^{2}}{3 \mu+\mu^{2}}$.
- There exists a constant β satisfying $0<\beta \leq \frac{2 \alpha}{p_{0} N\left(2-p_{0}\right)}\left[\frac{2}{N\left(2-p_{0}\right)}-\frac{1}{p_{0}}\right]^{-1}$ such that

$$
\|u\|_{L^{\infty}(\Omega)} \leq C(i(u)+1)^{\beta} .
$$

The results in [15] were generalized in [13] to similar equation with the Neumann boundary conditions. However, in that case, the techniques used in [22] cannot be adapted, due to the boundary estimates.

https://daneshyari.com/en/article/839687

Download Persian Version:

https://daneshyari.com/article/839687

Daneshyari.com

[^0]: * Corresponding author. Tel.: +33 21650418722.

 E-mail addresses: hajlouihatem@gmail.com (H. Hajlaoui), abdellaziz.harrabi@yahoo.fr (A. Harrabi), mtirifoued@yahoo.fr (F. Mtiri).

