On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions

Ovidiu Cârjă ${ }^{\text {a }}$, Alain Miranville ${ }^{\text {b }}$, Costică Moroşanuu ${ }^{\text {a,* }}$
${ }^{\text {a }}$ University of Iaşi, 700506 Iaşi, Romania
${ }^{\text {b }}$ Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, 86962 Chasseneuil Futuroscope Cedex, France

A R T I C L E I N F O

Article history:

Received 21 May 2014
Accepted 6 October 2014
Communicated by S. Carl

MSC:

35B65
35K61
35Q56
47H30
74A15
80A22

Keywords:

Nonlinear initial-boundary value problems
Nonlinear parabolic systems
Dynamic boundary conditions
Leray-Schauder principle
Nemytskii's operator
Thermodynamics
Phase-field models

Abstract

This paper studies a Caginalp phase-field transition system endowed with a general regular potential, as well as a general class, in both unknown functions, of nonlinear and non-homogeneous (depending on time and space variables) boundary conditions. We first prove the existence, uniqueness and regularity of solutions to the Allen-Cahn equation, subject to the nonlinear and non-homogeneous dynamic boundary conditions. The existence, uniqueness and regularity of solutions to the Caginalp system in this new formulation are also proved. This extends previous works concerned with regular potential and nonlinear boundary conditions, allowing the present mathematical model to better approximate the real physical phenomena, especially phase transitions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider, in a bounded domain $\Omega \subset \mathbb{R}^{n}, n \leq 3$, with a C^{2} boundary $\partial \Omega=\Gamma$ and for a finite time $T>0$, the following nonlinear parabolic system:

$$
\begin{cases}C_{p} \frac{\partial}{\partial t} u+\frac{\ell}{2} \frac{\partial}{\partial t} \varphi=k \Delta u+f_{1}(t, x) & \text { in } Q \tag{1.1}\\ \alpha \xi \frac{\partial}{\partial t} \varphi=\xi \Delta \varphi+F(\varphi)+s_{\xi} u+f_{2}(t, x) & \text { in } Q\end{cases}
$$

[^0]with nonlinear and non-homogeneous Cauchy-Neumann boundary conditions on the unknown function u and nonlinear and non-homogeneous dynamic boundary conditions on the unknown function φ, namely:
\[

$$
\begin{cases}k \frac{\partial}{\partial v} u+h u+g_{1}(t, x, u)=w_{1}(t, x) & \text { on } \Sigma \tag{1.2}\\ \xi \frac{\partial}{\partial v} \varphi+\alpha \xi \frac{\partial}{\partial t} \varphi-\Delta_{\Gamma} \varphi+c_{0} \varphi+g_{2}(t, x, \varphi)=w_{2}(t, x) & \text { on } \Sigma\end{cases}
$$
\]

and with the initial conditions

$$
\begin{equation*}
u(0, x)=u_{0}(x), \quad \varphi(0, x)=\varphi_{0}(x) \quad \text { in } \Omega \tag{1.3}
\end{equation*}
$$

where $Q=(0, T] \times \Omega, \Sigma=(0, T] \times \partial \Omega$, and:

- $u(t, x)$ represents the reduced temperature distribution in Q;
- $\varphi(t, x)$ is the phase function (the order parameter), used to distinguish between the states (phases) of a material which occupies the region Ω at every time $t \in[0, T]$;
- $C_{p}=\rho c$ (ρ is the density, c is the specific heat capacity), ℓ, k, α, ξ, h are physical parameters representing: the latent heat, the thermal conductivity, the relaxation time, the measure of the interface thickness, the heat transfer coefficient, respectively, while $s_{\xi}=\frac{m[S]_{E}}{2 \sigma} T_{E}$ is a bounded and positive quantity expressed by positive and bounded physical parameters (see [5]);
- c_{0} is a positive constant and Δ_{Γ} is the Laplace-Beltrami operator;
- $f_{1} \in L^{p}(Q), f_{2} \in L^{q}(Q)$ are given functions (which can be interpreted as distributed controls), where p and q satisfy (see also $[2,15,16,18,17])$

$$
\begin{equation*}
q \geq p \geq 2 \tag{1.4}
\end{equation*}
$$

- $F: \mathbb{R} \longrightarrow \mathbb{R}$ is a real function having the structure

$$
\begin{equation*}
F(\varphi)=f(\varphi)-a_{s}|\varphi|^{s-1} \varphi, \quad \forall \varphi \in \mathbb{R} \tag{1.5}
\end{equation*}
$$

with $a_{s}>0$ and $s \geq 3$ satisfying (see also relation (1.14))

$$
\begin{equation*}
\frac{n+2}{n+2-2 p}>s \quad \text { if } \frac{1}{p}-\frac{2}{n+2}>0 \tag{1.6}
\end{equation*}
$$

while $f(\varphi) \in C^{1}(\mathbb{R})$ fulfills, for constants $b_{1}, b_{2}>0$, the following properties:

$$
\begin{equation*}
\left|f^{\prime}(\varphi)\right| \leq b_{1}\left(1+|\varphi|^{s-2}\right), \quad \forall \varphi \in \mathbb{R} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(f\left(\varphi_{1}\right)-f\left(\varphi_{2}\right)\right)\left(\varphi_{1}-\varphi_{2}\right) \leq b_{2}\left(\varphi_{1}-\varphi_{2}\right)^{2}, \quad \forall \varphi_{1}, \varphi_{2} \in \mathbb{R} \tag{1.7'}
\end{equation*}
$$

- Examples of nonlinearities F depending on t, x and φ can be found in $[9,16]$. Here we take $F(\varphi)$ independent of the space variable because the main difficulty in treating the parabolic nonlinear problem (1.1) lies in the nonlinearity with respect to φ (see $[5,7,15,17,19]$ and references therein);
- $w_{1}, w_{2} \in W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)$ are given functions (which can be interpreted as boundary controls);
- $g_{i}: \Sigma \times \mathbb{R} \rightarrow \mathbb{R}, i=1,2$, are Carathéodory functions, i.e., $g_{i}(\cdot, \cdot, z): \Sigma \rightarrow \mathbb{R}$ is measurable, $\forall z \in \mathbb{R}$, and $g_{i}(t, x, \cdot)$: $\mathbb{R} \rightarrow \mathbb{R}$ is continuous, $\forall(t, x) \in \Sigma$, with $g_{i}(\cdot, \cdot, 0) \in L^{\infty}(\Sigma)$. Moreover, the following hypotheses are assumed to be satisfied ($i=1,2$):
$\mathrm{G}_{1}:\left(g_{i}\left(t, x, z_{1}\right)-g_{i}\left(t, x, z_{2}\right)\right)\left(z_{1}-z_{2}\right) \geq c_{1}\left(z_{1}-z_{2}\right)^{2}, \forall(t, x) \in \Sigma, z_{1}, z_{2} \in \mathbb{R}$, for a constant $c_{1}>0$;
G_{2} : there is a function $\bar{G}: \Sigma \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ verifying the relations

$$
\begin{aligned}
& \left(g_{i}\left(t, x, z_{1}\right)-g_{i}\left(t, x, z_{2}\right)\right)^{2} \leq \bar{G}\left(t, x, z_{1}, z_{2}\right)\left(z_{1}-z_{2}\right)^{2} \\
& \bar{G}\left(t, x, z_{1}, z_{2}\right) \leq c_{2}\left(1+\left|z_{1}\right|^{2\left(r^{\prime}-1\right)}+\left|z_{2}\right|^{2\left(r^{\prime}-1\right)}\right), \quad \forall(t, x) \in \Sigma, z_{1}, z_{2} \in \mathbb{R}
\end{aligned}
$$

for a constant $c_{2}>0$ and $r^{\prime} \geq 1$ such that (see relation (2.8))

$$
\begin{equation*}
\frac{n+2}{n+2-2 p} \geq r^{\prime} \quad \text { if } \frac{1}{p}-\frac{2}{n+2}>0 \tag{1.8}
\end{equation*}
$$

$\mathrm{G}_{3}: g_{i}(t, x, z) z \geq c_{3} z^{2}, \forall(t, x) \in \Sigma, z \in \mathbb{R}$, with $c_{3}>0$.

- $u_{0} \in W_{p}^{2-\frac{2}{p}}(\Omega)$, with $k \frac{\partial}{\partial \nu} u_{0}+h u_{0}+g_{1}\left(0, x, u_{0}\right)=w_{1}(0, x)$, and $\varphi_{0} \in W_{q}^{2-\frac{2}{q}}(\Omega)$, with $\xi \frac{\partial}{\partial \nu} \varphi_{0}-\Delta_{\Gamma} \varphi_{0}+c_{0} \varphi_{0}+$ $g_{2}\left(0, x, \varphi_{0}\right)=w_{2}(0, x)$.
Let us point out the following remark regarding the nonlinearity $F(\varphi)$ in (1.1), whose form is defined by (1.5).

https://daneshyari.com/en/article/839707

Download Persian Version:

https://daneshyari.com/article/839707

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: costica.morosanu@uaic.ro (C. Moroşanu).

