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non-homogeneous (depending on time and space variables) boundary conditions. We first
prove the existence, uniqueness and regularity of solutions to the Allen-Cahn equation,
subject to the nonlinear and non-homogeneous dynamic boundary conditions. The exis-
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1. Introduction

We consider, in a bounded domain £2 C R", n < 3, with a C?> boundary 852 = I" and for a finite time T > 0, the
following nonlinear parabolic system:

a ) .
piu—i—Eg(p:kAu—i—fl(t,x) inQ

) (1.1)
aéaw =&Ap +F(p) +ssu+f(t,x) inQ,
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with nonlinear and non-homogeneous Cauchy-Neumann boundary conditions on the unknown function u and nonlinear
and non-homogeneous dynamic boundary conditions on the unknown function ¢, namely:

0
k—u—i—hu—i—gl(t,x, u) = wq(t, x) on X
38 (1.2)
§5§0+ “3 (9 Arg + @ + &2(t, X, ) = wy(t,x) on X,
and with the initial CO]’]dlthHS
u(0,x) = up(x),  ¢@(0,%) = @o(x) in$2, (1.3)

whereQ = (0, T] x £2,X = (0,T] x 052, and:

e u(t, x) represents the reduced temperature distribution in Q ;

e ¢(t, x) is the phase function (the order parameter), used to distinguish between the states (phases) of a material which
occupies the region §2 at every time t € [0, T];

e C, = pc (p is the density, c is the specific heat capacity), £, k, o, £, h are physical parameters representing: the latent heat,
the thermal conductivity, the relaxation time, the measure of the interface thickness, the heat transfer coefficient, respectively,
while sz = %?ETE is a bounded and positive quantity expressed by positive and bounded physical parameters (see [5]);

e (g is a positive constant and A is the Laplace-Beltrami operator;

e fi € IP(Q), f, € L9(Q) are given functions (which can be interpreted as distributed controls), where p and q satisfy (see
also [2,15,16,18,17])

q=p=2; (1.4)
e F: R — Ris areal function having the structure

F(p) =f() —alpl* g, Vo R, (1.5)

with a; > 0 and s > 3 satisfying (see also relation (1.14))
n+2 1 2

L>s if—— —— >0, (1.6)

n+2-—2p p n+2
while f(¢) € C!(R) fulfills, for constants by, b, > 0, the following properties:

'@ <bi(1+9™?), Vg eR (17)
and

(f (@) — f@)) (@1 — @2) < ba(@1 — 2)%, Vor, ¢ €R. (1.7

e Examples of nonlinearities F depending on t, x and ¢ can be found in [9,16]. Here we take F(¢) independent of the space
variable because the main difficulty in treating the parabolic nonlinear problem (1.1) lies in the nonlinearity with respect

to ¢ (see [5,7,15,17,19] and references therein);
1
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o wi,wy €W, " P(x) are given functions (which can be interpreted as boundary controls);

e g : XY xR — R,i=1,2,are Carathéodory functions, i.e., gi(-, -, z) : ¥ — R is measurable,Vz € R, and g;(t, x, -) :
R — R s continuous, V (t,x) € X, with g;(-, -, 0) € L*°(X). Moreover, the following hypotheses are assumed to be
satisfied (i = 1, 2):

Gi: (gi(t, X,z1) — gi(t, x, 22)>(zl —2) > c1(z1 —23)?, V(t,x) € ¥,21,2, € R, for a constant ¢; > 0;

G,: thereis a function G : ¥ x R? — R verifying the relations

2
(gf(t,x, z1) — gi(t, x, Zz)) < G(t,x, 21, 22)(z1 — 22)°,

C(ta X, 21, 22) 5 Cz(l + |Z]|2(r/71) + |ZZ|2(T/71))7 v (t5 X) € 25 21,23 € R7
for a constant ¢c; > 0 and r’ > 1 such that (see relation (2.8))
n+2 1 2
—>r f-— = >0 (1.8)
n+2-—2p p n+2
Gs: g,(txz)z>c32 V(t,x) € ¥, z € R,withcs > 0.

e Uy € Wp "(.Q) with k ~up + hug + g1(0,x, ug) = w;(0,%), and ¢y € Wq q(.Q) w1th§3vg00 Argo + copo +
£2(0, X, 9o) = w2(0, x).

Let us point out the following remark regarding the nonlinearity F(¢) in (1.1), whose form is defined by (1.5).
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