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a b s t r a c t

Let F : Rn
× RN×n

→ RN be a Carathéodory map. In this paper we consider the problem of
existence and uniqueness of weakly differentiable global strong a.e. solutions u : Rn

−→

RN to the fully nonlinear PDE system

F(·,Du) = f , a.e. on Rn, (1)

when f ∈ L2(Rn)N . By introducing an appropriate notion of ellipticity, we prove the
existence of solution to (1) in a tailored Sobolev ‘‘energy’’ space (known also as the J.L. Lions
space) and a uniqueness a priori estimate. The proof is based on the solvability of the
linearised problemby Fourier transformmethods and a ‘‘perturbation device’’which allows
the use of Campanato’s notion of near operators, an idea developed for the 2nd order case.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Let n,N ≥ 2 and let also

F : Rn
× RN×n

−→ RN ,

be a Carathéodory map, namely
x → F(x,Q ) is measurable, for every Q ∈ RN×n,
Q → F(x,Q ) is continuous, for almost every x ∈ Rn.

In this paper we consider the problem of existence and uniqueness of global strong a.e. solutions u : Rn
−→ RN to the fully

nonlinear PDE system

F(·,Du) = f , a.e. on Rn. (1.1)
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To the best of our knowledge, the above problem has not been considered before in this generality. We will assume that
our right hand side f is an L2 vector function, i.e. f ∈ L2(Rn)N . By introducing an appropriate ellipticity assumption on F ,
we will prove unique solvability of (1.1) for a weakly differentiable map u, together with a strong a priori estimate. In the
above, Du(x) ∈ RN×n denotes the gradient matrix of u = uαeα , namely Du = (Diua)eα ⊗ ei and Di = ∂/∂xi. Here and in the
sequel we employ the summation conventionwhen i, j, k, . . . run in {1, . . . , n} and α, β, γ , . . . run in {1, . . . ,N}. Evidently,
{ei}, {eα} and {eα ⊗ ei} denote the standard bases of Rn,RN and RN×n respectively.

The simplest case of (1.1) is when F is independent of x and linear in P , that is when

F(x, P) = AαβjPβjeα,

for a linear operator A : RN×n
−→ RN . Then (1.1) becomes

AαβjDjuβ = fα,

which we will write compactly as

A : Du = f . (1.2)

The appropriate notion of ellipticity in this case is that the nullspace of the operator A contains no (non-trivial) rank-one
lines. This means

|A : η ⊗ a| > 0, η ≠ 0, a ≠ 0. (1.3)

The prototypical example is the operator A : R2×2
−→ R2 given by

A =


1 0 0 1
0 −1 1 0


which corresponds to the Cauchy–Riemanndifferential operator. Linear elliptic first order systemswith constant coefficients
have been extensively studied in several contexts, since they play an important role in Complex and Harmonic Analysis
(see e.g. Buchanan–Gilbert [2], Begehr–Wen [1]), Compensated Compactness and Differential Inclusions (Di Perna [14],
Müller [19]), regularity theory of PDE (see Chapter 7 in [18] forMorrey’s exposition of theAgmon–Douglis–Nirenberg theory)
and Geometric Analysis with differential forms (Csató–Dacorogna–Kneuss [12]).

The fully nonlinear case of (1.1) is much less studied. When F is coercive instead of elliptic, the problem is better under-
stood. By using the analytic Baire category method of the Dacorogna–Marcellini [13] which is the ‘‘geometric counterpart’’
of Gromov’s Convex Integration, one can prove that, under certain structural and compatibility assumptions, the Dirichlet
problem

F(·,Du) = f , inΩ,
u = g, on ∂Ω, (1.4)

has infinitelymany strong a.e. solutions in the Lipschitz space, forΩ ⊆ Rn and g Lipschitz. However, ellipticity and coercivity
of F are, roughly speaking, mutually exclusive. In particular, the Dirichlet problem (1.4) is not well posed when F is either
linear or elliptic. For example, the equation u′

− 1 = 0 has no Lipschitz solution on (0, 1) for which u(0) = u(1) = 0.
Herein we focus on the general system (1.1) and we consider the problem of finding an ellipticity condition which

guarantees the existence as well as uniqueness of a strong a.e. weakly differentiable solution. In order to avoid the
compatibility difficulties which arise in the case of the Dirichlet problem on bounded domains, we will consider the case of
global solutions on the whole space. We will also restrict attention to the case of f in L2(Rn)N and n ≥ 3. This is mostly for
technical simplicity and since the case of n = 2 has been studied much more extensively. We will prove unique solvability
of (1.1) in the ‘‘energy’’ Sobolev space1

W 1;2∗,2(Rn)N :=


u ∈ L2

∗

(Rn)N | Du ∈ L2(Rn)Nn


(1.5)

where n ≥ 3 and 2∗ is the conjugate Sobolev exponent:

2∗
=

2n
n − 2

.

The technique we follow for (1.1) is based on the solvability of the linear constant coefficient equation (1.2) via the Fourier
transform. In Section 2 we prove the existence and uniqueness of a strong global solution u ∈ W 1;2∗,2(Rn)N to (1.2), for
which we also have an explicit integral representation formula for the solution (Theorem 2). The essential idea in order to
go from the linear to the fully nonlinear case is a perturbation device inspired from the work of Campanato [4–9] on the
second order case of

F(·,D2u) = f . (1.6)

1 We would like to thank the referee of this paper who pointed out to us that (1.5) is called in the literature the ‘‘J.L. Lions space’’.
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