

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Lengths, areas and Lipschitz-type spaces of planar harmonic mappings

Shaolin Chen^a, Saminathan Ponnusamy^b, Antti Rasila^{c,*}

- ^a Department of Mathematics and Computational Science, Hengyang Normal University, Hengyang, Hunan 421008, People's Republic of China
- ^b Indian Statistical Institute (ISI), Chennai Centre, SETS (Society for Electronic Transactions and Security), MGR Knowledge City, CIT Campus, Taramani, Chennai 600 113, India
- ^c Department of Mathematics and Systems Analysis, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland

ARTICLE INFO

Article history: Received 24 September 2014 Accepted 10 December 2014 Communicated by Enzo Mitidieri

MSC: primary 30H05 30H30 secondary 30C20 30C45

Keywords: Harmonic and Bloch mappings Quasiconformal mappings Hardy and Lipschitz spaces Length Area function

ABSTRACT

In this paper, we give bounds for length and area distortion for harmonic *K*-quasiconformal mappings, and investigate certain Lipschitz-type spaces on harmonic mappings.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Let D be a simply connected subdomain of the complex plane \mathbb{C} . A complex-valued function f defined in D is called a *harmonic mapping* in D if and only its real and the imaginary parts of f are real harmonic in D. It is known that every harmonic mapping f defined in D admits a decomposition $f = h + \overline{g}$, where h and g are analytic in f. Since the Jacobian f is given by

$$I_f = |f_z|^2 - |f_{\overline{z}}|^2 := |h'|^2 - |g'|^2,$$

f is locally univalent and sense-preserving in D if and only if |g'(z)| < |h'(z)| in D; or equivalently if $h'(z) \neq 0$ and the dilatation $\omega = g'/h'$ has the property that $|\omega(z)| < 1$ in D (see [16]). Let $\mathcal{H}(D)$ denote the class of all sense-preserving harmonic mappings in D. We refer to [7,9] for basic results in the theory of planar harmonic mappings.

For $a \in \mathbb{C}$, let $\mathbb{D}(a, r) = \{z : |z - a| < r\}$. In particular, we use \mathbb{D}_r to denote the disk $\mathbb{D}(0, r)$ and \mathbb{D} , the open unit disk \mathbb{D}_1 . For a harmonic mapping f defined on \mathbb{D} , we use the following standard notations:

$$\Lambda_{f}(z) = \max_{0 \le \theta \le 2\pi} |f_{z}(z) + e^{-2i\theta} f_{\overline{z}}(z)| = |f_{z}(z)| + |f_{\overline{z}}(z)|$$

E-mail addresses: mathechen@126.com (S. Chen), samy@isichennai.res.in, samy@iitm.ac.in (S. Ponnusamy), antti.rasila@iki.fi (A. Rasila).

^{*} Corresponding author.

and

$$\lambda_f(z) = \min_{0 < \theta < 2\pi} |f_z(z) + e^{-2i\theta} f_{\overline{z}}(z)| = \left| |f_z(z)| - |f_{\overline{z}}(z)| \right|.$$

We recall that a function $f \in \mathcal{H}(\mathbb{D})$ is said to be K-quasiregular, $K \in [1, \infty)$, if for $z \in \mathbb{D}$, $\Lambda_f(z) \leq K\lambda_f(z)$. In addition, if f is univalent in \mathbb{D} , then f is called a K-quasiconformal harmonic mapping in \mathbb{D} .

Let Ω be a domain of \mathbb{C} , with non-empty boundary. Let $d_{\Omega}(z)$ be the Euclidean distance from z to the boundary $\partial \Omega$ of Ω . In particular, we always use d(z) to denote the Euclidean distance from z to the boundary of \mathbb{D} . The normalized area of a set $G \subset \mathbb{C}$ is denoted by A(G). It means that $A(G) = \text{area } (G)/\pi$, where area (G) is the area of G. The area problem of analytic functions has attracted much attention (see [1,22-24]). We investigate the area problem of harmonic mappings and obtain the following result.

Theorem 1. Let Ω_1 and Ω_2 be two proper and simply connected subdomains of \mathbb{C} containing the point of origin. Then for a sense-preserving and K-quasiconformal harmonic mapping f defined in Ω_1 with f(0) = 0,

$$KA(f(\Omega_1) \cap \Omega_2) + A(f^{-1}(\Omega_2)) \ge \min\{d^2_{\Omega_1}(0), d^2_{\Omega_2}(0)\}.$$
 (1)

Moreover, if K = 1, then the estimate of (1) is sharp.

We remark that Theorem 1 is a generalization of [22, Theorem].

A planar harmonic mapping f defined on \mathbb{D} is called a *harmonic Bloch mapping* if

$$\beta_f = \sup_{z,w \in \mathbb{D}, z \neq w} \frac{|f(z) - f(w)|}{\rho(z,w)} < \infty.$$

Here β_f is called the *Lipschitz number* of f. and

$$\rho(z,w) = \frac{1}{2} \log \left(\frac{1 + |(z-w)/(1-\overline{z}w)|}{1 - |(z-w)/(1-\overline{z}w)|} \right) = \operatorname{arctanh} \left| \frac{z-w}{1-\overline{z}w} \right|$$

denotes the hyperbolic distance between z and w in \mathbb{D} . It is known that

$$\beta_f = \sup_{z \in \mathbb{D}} \left\{ (1 - |z|^2) \Lambda_f(z) \right\}.$$

Clearly, a harmonic Bloch mapping f is uniformly continuous as a map between metric spaces,

$$f: (\mathbb{D}, \rho) \to (\mathbb{C}, |\cdot|).$$

and for all $z, w \in \mathbb{D}$ we have the Lipschitz inequality

$$|f(z)-f(w)| \leq \beta_f \rho(z,w)$$
.

A well-known fact is that the set of all harmonic Bloch mappings, denoted by the symbol \mathcal{HB} , forms a complex Banach space with the norm $\|\cdot\|$ given by

$$||f||_{\mathcal{HB}} = |f(0)| + \sup_{z \in \mathbb{D}} \{ (1 - |z|^2) \Lambda_f(z) \}.$$

Specially, we use \mathcal{B} to denote the set of all analytic functions defined in \mathbb{D} which forms a complex Banach space with the norm

$$||f||_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} \{(1 - |z|^2)|f'(z)|\}.$$

The reader is referred to [8, Theorem 2] (see also [5,6]) for a detailed discussion. For $r \in [0, 1)$, the length of the curve $C(r) = \{f(re^{i\theta}) : \theta \in [0, 2\pi]\}$, counting multiplicity, is defined by

$$\ell_f(r) = \int_0^{2\pi} |df(re^{i\theta})| = r \int_0^{2\pi} \left| f_z(re^{i\theta}) - e^{-2i\theta} f_{\overline{z}}(re^{i\theta}) \right| d\theta,$$

where f is a harmonic mapping defined in \mathbb{D} . In particular, it is convenient to set

$$\ell_f(1) = \sup_{0 < r < 1} \ell_f(r).$$

Theorem 2. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} \overline{b}_n \overline{z}^n$ be a sense-preserving K-quasiconformal harmonic mapping. If $\ell_f(1) < \infty$, then for n > 1,

$$|a_n| + |b_n| \le \frac{K\ell_f(1)}{2n\pi} \tag{2}$$

and

$$\Lambda_f(z) \le \frac{\ell_f(1)\sqrt{K}}{2\pi(1-|z|)}.\tag{3}$$

Download English Version:

https://daneshyari.com/en/article/839726

Download Persian Version:

https://daneshyari.com/article/839726

<u>Daneshyari.com</u>