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a b s t r a c t

The paper studies the existence of global attractor for the generalized double dispersion
equation arising in elastic waveguidemodel utt −∆u−∆utt +∆

2u−∆ut −∆g(u) = f (x).
The main result is concerned with nonlinearities g(u) with supercritical growth. In that
case we construct a subclass G of the limit solutions and show that it has a weak global at-
tractor. Especially, in non-supercritical case, theweak topology becomes strong, the further
regularity of the global attractor is obtained and the exponential attractor is established in
natural energy space.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the existence of global attractor for the generalized double dispersion equation
arising in elastic waveguide model

utt −∆u −∆utt +∆2u −∆ut −∆g(u) = f (x) inΩ × R+, (1.1)

where Ω is a bounded domain in RN with the smooth boundary ∂Ω , on which we consider either the hinged boundary
condition

u|∂Ω = ∆u|∂Ω = 0, (1.2)

or the clamped boundary condition

u|∂Ω = 0,
∂u
∂ν


∂Ω

= 0, (1.3)

where ν is the unit outward normal on ∂Ω , and the initial condition

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.4)

and the assumptions on g(u) and f will be specified later.
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In the study of nonlinear wave propagation in elastic waveguide, on account of the energy exchange between thewaveg-
uide and the external medium through the lateral surfaces of the waveguide, Samsonov et al. [28,27] established the
so-called cubic double dispersion equation

utt − uxx =
1
4
(cu3

+ 6u2
+ autt − buxx + dut)xx (1.5)

to describe the longitudinal displacement of the elastic rod. Here a, b, c > 0 and d ≠ 0 are some constants depending on the
Young modulus, the shearing modulus, density of the waveguide and the Poisson coefficient. Obviously, Eq. (1.1) includes
(1.5) as its special case. There have been lots of research studies on the well-posedness, blowup, asymptotic behavior and
other properties of solutions for both the IBVP and the IVP of the equation of type (1.1) (see [1,5,6,8,9,22–26,30–33] and
references therein). While for the investigation on the global attractor to Eq. (1.1), one can see [14,15,34–36] and references
therein.

Global attractor is a basic concept in the research studies of the asymptotic behavior of the dissipative system. From
the physical point of view, the global attractor of the dissipative equation (1.1) represents the permanent regime that can
be observed when the excitation starts from any point in natural energy space, and its dimension represents the number
of degree of freedom of the related turbulent phenomenon and thus the level of complexity concerning the flow. All the
information concerning the attractor and its dimension from the qualitative nature to the quantitative nature then yield
valuable information concerning the flows that this physical system can generate. On the physical and numerical sides, this
dimension gives one an idea of the number of parameters and the size of the computations needed in numerical simulations.
However, the global attractor may possess an essential drawback, namely, the rate of attraction may be arbitrarily slow and
it cannot be estimated in terms of physical parameters of the system under consideration. While the exponential attractor
overcomes the drawback because not only it has finite fractal dimension but also its contractive rate is exponential and
measurable in terms of the physical parameters.

Chueshov and Lasiecka [12,11] studied the longtime behavior of solutions to the Kirchhoff–Boussinesq plate equation

utt + kut +∆2u = div[f0(∇u)] +∆[f1(u)] − f2(u) (1.6)

withΩ ⊂ R2 and the clamped boundary condition (1.3). Here k > 0 is the damping parameter, the mapping f0 : R2
→ R2

and the smooth functions f1 and f2 represent (nonlinear) feedback forces acting upon the plate, in particular,

f0(∇u) = |∇u|2∇u, f1(u) = u2
+ u.

Ignoring both restoring force f0(∇u) and feedback force f2(u) and replacing the inertial term utt by ϵutt , with ϵ > 0 (the
relaxation time) sufficiently small, Eq. (1.6) becomes the modified Cahn–Hilliard equation

ϵutt + ut −∆(−∆u + f (u)) = g, (1.7)

which is proposed by Galenko et al. [16–18] to model rapid spinodal decomposition in non-equilibrium phase separation
processes. Grasselli et al. [20,19,21] studied the well-posedness and the longtime dynamics of Eq. (1.7) in both 2D and 3D
cases, with hinged boundary condition. They established the existence of the global and exponential attractor for ϵ = 1 in 2D
case, and for ϵ > 0 sufficiently small in 3D case. Taking ϵ = 1 in (1.7) or taking f0(∇u) = ∇u, f2 = 0 in (1.6), and taking into
account the inertial force represented by −∆utt and replacing the weak damping ut by a strong one −∆ut , Eq. (1.1) arises.

In 1D case, Dai and Guo [14,15] established in phase space E2 = H2
∩ H1

0 × H1
0 the finite dimensional global attractor

for the IBVP of Eq. (1.1), with hinged boundary condition (1.2). For the multidimensional case, Yang [34] established in E2
the global attractor provided that the growth exponent p of the nonlinearity g(u) is subcritical, that is, 1 ≤ p < N

(N−2)+ ,
with N ≤ 5, where and in the context a+

= max{a, 0}. Under the similar assumptions the author [35] also discussed the
existence of global attractor for Eq. (1.1) on RN . Here the growth exponent p̃ =

N
N−2 (N ≥ 3) is called critical because one

cannot get the uniqueness of weak solutions and cannot define the solution semigroup according to the traditional manner
as p > p̃. When p > p̃, by introducing the trajectory dynamical system, which does not require the uniqueness of solutions
and is developed by Chepyzhov and Vishik [10], Yang [36] established the so-called trajectory attractor but in the trajectory
phase space equipped with weak∗ topology and not in natural energy space.

In order to establish the global attractor in the sense of strong topology in the case of supercritical nonlinearity and
without the uniqueness of solutions, Ball [2,3] proposed the concept of generalized semiflows and use it (see [3]) to study
the longtime dynamics of the semi-linear evolution equation

utt −∆u + βut + g(u) = 0, (1.8)

on a bounded domainΩ ⊂ RN with Dirichlet boundary condition. In the supercritical nonlinearity case:

|g(s)| ≤ C(1 + |s|r), (1.9)

with r > N
(N−2)+ , based on an unproved assumption that every weak solution satisfies the energy equation, he showed

that the related generalized semiflow possesses in natural energy space a global attractor without the requirement for the
uniqueness of weak solutions. But by now, to the best of our knowledge, the unproved assumption is still an open problem.
Recently, Carvalho, Cholewa and Dlotko [7] proposed the concept of ‘the subclass LS of the limit solutions’ and proved that
the corresponding subclass LS of Eq. (1.8) has a weak global attractor provided that 1 < r < N+2

(N−2)+ .
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