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1. Fractional model for nonlinear optical fiber materials

Ginzburg-Landau (GL) equations are usually applied to describe a class of optical fiber materials. There has been ex-
tensive study of the GL equations (see [1-6] and reference therein). The exact homoclinic wave and soliton solution of the
GL equations have been studied in [2]. Guo et al. in [5] proved the existence of a global attractor for the GL equation. The
coupled Ginzburg-Landau (CGL) equations have attracted considerable attention in modeling a class of nonlinear optical
fiber materials with active and passive coupled cores. There are also many papers concerning the CGL equations (see [7-9]
and reference therein). The existence of the stable solutions and exponential attractors for the CGL systems has been proved
in [7,9] respectively.

The fractional Laplacian operator is exactly the infinitesimal generators of Lévy stable diffusion processes, and there are
many fractional models that arise in plasma, flames propagation and chemical reactions in liquids, geophysical fluid dynam-
ics and financial market et al. There have been extensive study and application of fractional differential equations including
the fractional Schrédinger equation [10], fractional Landau-Lifschitz equation [11], fractional Landau-Lifschitz-Maxwell
equation [12] and fractional Ginzburg-Landau (FGL) equation [13]. Pu and Guo in [13] proved the well-posedness and dy-
namics for the FGL equation. However, there are some limitations to this model to describe some models with some pertur-
bations which will lead to a very large complex system. In mathematical physics, the models can be described by stochastic
partial differential equations. Based on [13], the dynamics for the stochastic FGL equation with multiplicative noise has been
studied in [14].
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Motivated by [13,15], in the present paper, we consider the following coupled fractional Ginzburg-Landau (CFGL)
equation:

U =yt — (Yo +iy3) (= A)*u + (ioy — ox)|ul’u+iv, Xx€R, t >0, (1.1)

Ve = (=1 + ip2)v — (U3 + ipa) (=) Pv+iu, xeR, t>0, :
with the initial conditions and the periodic boundary conditions:

u,0) =up(x),  v(x,0) =vp(x), X€R, (1.2)

u(x+ 2w, t) = u(x, t), v(x+2m,t) =v(x,t), t>0,x€eR, ’

where «, 8 € (0, 1), u and v denote the amplitude of the electromagnetic wave in a dual-core system, t denotes the time, x
is the horizontal axis of the plane wave, y, > 0, u; > 0, u3 > 0and u4 > 0 are dissipation coefficients and p; > 1, y1, y3,
01, 03 are real numbers. The fractional Laplacian (—A)% can be regarded as a pseudo differential operator with |£|>* and
can be realized through the Fourier transform [16]:

(—AYuE) = [EP0E), (1.3)

where U is the Fourier transform of u. In what follows, we write A for (—A) %.
However, there is a natural question: How about the dynamics for the stochastic CFGL equations? Motivated by [14], we
also consider the following stochastic CFGL equation with multiplicative noise:

du = [y1u — (v + iy3) (—A)*u + (ioy — op)|ul’u + ivldt + BjudWi(t), X€R, t >0,
dv = [(—p1 + ip2)v — (3 + ina) (—A)Pv + iuldt + BudWs (1), x€R, t >0,

with the same initial conditions and periodic boundary conditions to (1.1), where «, 8 € (0, 1), y; > 0,y, > 0, 81 > 0,

(1.4)

2
wp > 1+ %2, us >0, B, > 0, y3, 01, 02, 3 and 4 are real numbers and Wy (t) and W, (t) are two-sided Wiener processes
on a complete probability space.

The rest of the paper is organized as follows. The working function space and some basic concepts related to the random
dynamical system are introduced in Section 2. We establish the well-posedness of the weak solutions for the deterministic
CFGL equation in Section 3. In Section 4, we consider the long-time behavior of the solution and the existence of a global
attractor is shown. Finally, a continuous random dynamical system for the stochastic CFGL equation is constructed and the
existence of a random attractor is proved in Section 5.

2. Notations and preliminaries
In this section, we first review some notations for the working function space.
Denote
2 2
H =L (D) = {ulu € [0, 27], u(x + 27, t) = u(x, 1)}, D = [0, 27],
W =H x H = {(u,v)lu e H,v € H},

with the norm
2 2 2 2 2
lully = (u, u*) =/ [u|“dx, el = lulg + lvlg,
D

where ¢ = (u, v) € W. For simplicity, we use the notation | - || to represent the norm for space H.
In what follows, we redefine some notations to the fractional derivative and fractional Sobolev space.
Since u is a periodic function, it can be expressed by a Fourier series

1 . .
ue) = (F D) = o— > e,

E€Z

where
7© = [ eOuga.
D

Then for s € R, denote
Au=F(EFUE)).

Finally, for any s € R, we define the homogeneous Sobolev space H* under the norm

lullgs = llA°ull = <Z Iélzslﬁ(é)lz) .

E€L
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