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a b s t r a c t

We study propagation of singularities for Hamilton–Jacobi equations

St + H(t, x, ∇S) = 0, (t, x) ∈ (0, ∞) × Rn,

by means of the excess Lagrangian action and a related class of characteristics. In a sense,
the excess action gauges how far a curve X(t) is from being action minimizing for a given
viscosity solution S(t, x) of the Hamilton–Jacobi equation. Broken characteristics are de-
fined as curves along which the excess action grows at the slowest pace possible. In par-
ticular, we demonstrate that broken characteristics carry the singularities of the viscosity
solution.

© 2014 Elsevier Ltd.

1. Introduction

The topic of this paper is the classical Hamilton–Jacobi equation

St + H(t, x, ∇S) = 0 in Q = (0, ∞) × Rn, (1)

lim
t↓0

S(t, x) = S0(x) in Rn. (2)

This nonlinear partial differential equation arises in, e.g., the calculus of variations, optimal control theory, and classical
mechanics [1–4]. Regardless of the regularity of the data, the Cauchy problem (1)–(2) only rarely admits a classical solution.
As is agreed upon, the appropriate concept of weak solution of (1) is that of a viscosity solution [5,4]. This notion of a
generalized solutiondistinguishes the value function of an associated variational problem fromother candidates of solutions.
One of the overall goals of current research about (1)–(2) is to understand the time evolution of the singularities of a given
viscosity solution of (1) defined as its points of nondifferentiability. In the one-dimensional case, for an equivalent scalar
conservation law, Dafermos performed in [6] a detailed analysis showing among other things that singularities, once they
form, propagate indefinitely along generalized characteristics (shock curves) forward in time. In the multidimensional case,
Albano and Cannarsa defined in [7] a notion of generalized characteristics with respect to which they were able to establish
similar results about the dynamics of singularities for (1). We recall their definition of generalized characteristics and main
result.
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Definition 1. Let S be a viscosity solution of (1). A generalized characteristic in an interval I ⊆ [0, ∞) is a locally Lipschitz
continuous curve X : I → Rn such that the differential inclusion

Ẋ(t) ∈ co∇pH(t,X(t), ∇+S(t,X(t))) (3)

holds for almost all t ∈ I .

The singular set of S is defined as the set Σ of points where S fails to be differentiable.

Theorem 1. Suppose that H ∈ C1 and p → H(t, x, p) is strictly convex for each (t, x) ∈ [0, ∞) × Rn. Let S be a locally
semiconcave viscosity solution of (1). Assume that (t0, x0) ∈ Σ . Then there exist t1 > t0 and a generalized characteristic X in
the time interval [t0, t1) such that X(t0) = x0 and (t,X(t)) ∈ Σ for all t ∈ [t0, t1).

Proof. See Theorem 8 in [7], Theorems 5.6.6 in [2], or [8]. A refined result appears in Theorem 3.2 of [9]. �

The definition of generalized characteristics is weak as the differential inclusion (3) actually involves two convexifica-
tion operations: an outer convexification as well as an inner one appearing implicitly through the superdifferential ∇

+S.
Accordingly, when n ≥ 2, there may exist several generalized characteristics emanating from a given singular point [9,10].
The purpose of this paper is to study a much stronger notion of characteristics entailing a more accurate description of the
spreading of singularities for Hamilton–Jacobi equations. In their articles [11,12], Khanin and Sobolevski made substantial
progress on the problem of singular dynamics by proving the existence of what we have chosen to call ‘‘broken characteris-
tics’’. Theyweremotivated by a fluid dynamical analogy and proved the existence of a broken characteristic emanating from
a given point. Broken characteristics were viewed as particle trajectories which may hit Σ and after that will move inside
Σ . The dynamics in the singular set Σ is governed by a specific law. Before intersecting the singular support Σ , trajectories
are unique minimizers of the classical Lagrangian action and simultaneously classical characteristics as well as extremals.
After hitting Σ , while ceasing to minimize the Lagrangian action, they will continue their motion inside the singular set, or
in its closure, in such a way that the ‘‘excess action’’ grows as slowly as possible.

We summarize the contribution of Khanin and Sobolevski. As a first step, they defined at each (t, x) ∈ Q an ‘‘admissible
momentum’’ p∗(t, x) and an ‘‘admissible velocity’’ v∗(t, x) related by p∗(t, x) = ∇vL(t, x, v∗(t, x)). The admissible velocity
arises as the minimum point of a certain strictly convex function, v → Y (t, x, v), which is derived from the Lagrangian and
the superdifferential of the value function S. At anynonsingular point (t, x), the admissiblemomentumandvelocity are given
by the classical expressions p∗(t, x) = ∇S(t, x) and v∗(t, x) = ∇pH(t, x, ∇S(t, x)). In general, p∗ is a particular selection of
the multivalued superdifferential ∇+S. Second, Khanin and Sobolevski established the existence of a nonsmooth flow that
is compatible with the discontinuous velocity field v∗. Namely, they demonstrated that for every point (t0, x0) ∈ Q there
exists a locally Lipschitz curve X : [t0, t1) → Rn with X(t0) = x0 whose right derivative Ẋ+(t) exists and satisfies Ẋ+(t) =

v∗(t,X(t)) for every t ∈ [t0, t1). Such trajectories are called ‘‘broken characteristics’’ in this paper. They carry the singular-
ities of S (as verified in Theorem 2). Broken characteristics are, needless to say, very special generalized characteristics.

This paper investigates in some detail the relation between broken characteristics and excess action. We show that
the time derivative of the excess action along a given curve can be described in terms of the nonnegative function Y . In
this picture, broken characteristics are trajectories along which the excess action grows at the slowest pace possible. The
propagation property stated in Theorem1 remains fulfilled for broken characteristics (see Theorem2).We also obtain results
about the right-continuity of ẋ+ and other functions (see Theorem2, Corollary 1) and refine the description of the singularity
propagation (Theorems 4 and 5).

2. Conditions and prerequisites

The Hamiltonian H appearing in (1) is the Legendre–Fenchel transform of a Lagrangian L.

2.1. Conditions

We assume the following conditions connecting (1) to a well-behaved problem in the calculus of variations.

(A) The Lagrangian L(t, x, v) is C2([0, ∞) × Rn
× Rn). It is coercive in the sense that L(t, x, v) ≥ ℓ(|v|) for all (t, x, v) ∈

[0, ∞)×Rn
×Rn where ℓ(s)/s → ∞ as s → ∞. Furthermore, L(t, x, v) is a locally uniformly convex function of v ∈ Rn

for every (t, x) ∈ [0, ∞)×Rn, i.e., the Hessianmatrix∇
2
v L(t, x, v) is positive definite for all (t, x, v) ∈ [0, ∞)×Rn

×Rn.
The Hamiltonian H is given by

H(t, x, p) = max
v∈Rn

(⟨p, v⟩ − L(t, x, v)), (t, x, p) ∈ [0, ∞) × Rn
× Rn.

(B) At least one of conditions (i) and (ii) below is satisfied:
(i) For any r > 0 and T > 0 there exist a nonnegative constant k and a nonnegative γ ∈ L1(0, T ) such that

|L(t, x, v) − L(t̃, x, v)| ≤ (k|L(t, x, v)| + γ (t))|t − t̃|
for all t, t̃ ∈ [0, T ], |x| ≤ r and v ∈ Rn.
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