Liapunov-type inequalities for third-order half-linear equations and applications to boundary value problems

Sougata Dhar, Qingkai Kong*
Department of Mathematics, Northern Illinois University, DeKalb, IL 60115, USA

ARTICLE INFO

Article history:

Received 2 May 2014
Accepted 29 July 2014
Communicated by Enzo Mitidieri

Keywords:

Liapunov-type inequality
Third-order
Half-linear differential equations
Boundary value problems
Existence and uniqueness of solutions

Abstract

We derive Liapunov-type inequalities for third-order half-linear differential equations. These inequalities utilize integrals of both $q_{+}(t)$ and $q_{-}(t)$ rather than those of $|q(t)|$ as in most papers in the literature for higher-order Liapunov-type inequalities. Furthermore, by combining these inequalities with the "uniqueness implies existence" theorems by several authors, we establish the uniqueness and hence existence-uniqueness for several classes of boundary value problems for third-order linear equations. We believe that this is the first time for Liapunov-type inequalities to be used to deal with boundary value problems and expect that this approach can be further applied to study general higher-order boundary value problems.

© 2014 Elsevier Ltd.

1. Introduction

For the second-order linear differential equation

$$
\begin{equation*}
x^{\prime \prime}+q(t) x=0 \tag{1.1}
\end{equation*}
$$

where $q \in C([a, b], \mathbb{R})$, the following result is known as the Liapunov inequality, see [1,2].
Theorem 1.1. Assume $x(t)$ is a solution of Eq. (1.1) such that $x(a)=x(b)=0$ and $x(t) \neq 0$ for $t \in(a, b)$. Then

$$
\begin{equation*}
\int_{a}^{b}|q(t)| d t>\frac{4}{b-a} \tag{1.2}
\end{equation*}
$$

It was first noticed by Wintner [3] and later by several other authors that inequality (1.2) can be improved by replacing $|q(t)|$ by $q_{+}(t):=\max \{q(t), 0\}$, the nonnegative part of $q(t)$, to become

$$
\begin{equation*}
\int_{a}^{b} q_{+}(t) d t>\frac{4}{b-a} \tag{1.3}
\end{equation*}
$$

The Liapunov inequality was extended by Hartman [4, Chapter XI] to the more general equation

$$
\begin{equation*}
\left(r(t) x^{\prime}\right)^{\prime}+q(t) x=0 \tag{1.4}
\end{equation*}
$$

where $q, r \in C([a, b], \mathbb{R})$ such that $r(t)>0$ for $t \in[a, b]$, as follows:

[^0]Theorem 1.2. Assume $x(t)$ is a solution of Eq. (1.4) such that $x(a)=x(b)=0$ and $x(t) \neq 0$ for $t \in(a, b)$. Then

$$
\begin{equation*}
\int_{a}^{b} q_{+}(t) d t>\frac{4}{\int_{a}^{b} r^{-1}(t) d t} \tag{1.5}
\end{equation*}
$$

The above inequalities have been further improved by replacing $\int_{a}^{b} q_{+}(t) d t$ by some integrals of $q(t)$ on parts of or the whole interval $[a, b]$. In fact, under the assumptions of Theorem 1.1, Harris and Kong [5, Theorem 2.3] showed that there exist two disjoint subintervals I_{1} and I_{2} such that

$$
\int_{I_{1} \cup I_{2}} q(t) d t>\frac{4}{b-a} \text { and } \int_{[a, b] \backslash\left(I_{1} \cup I_{2}\right)} q(t) d t \leq 0
$$

and Brown and Hinton [6] showed that

$$
\left|\int_{a}^{b} q(t) d t\right|>\frac{4}{b-a}
$$

We note that the number 4 in the above inequalities is the best in the sense that if it is replaced by any larger number, then the inequalities fail to hold, see [4, p. 345] and [7] for examples.

In recent years, Liapunov-type inequalities have also been developed for higher-order differential equations. In particular, Parhi and Panigrahi [8] established the Liapunov-type inequalities for the third-order linear differential equation

$$
\begin{equation*}
x^{\prime \prime \prime}+q(t) x=0 \tag{1.6}
\end{equation*}
$$

as follows:
Theorem 1.3. (a) Let $-\infty<a<b<\infty$ and $q \in C([a, b], \mathbb{R})$.Assume $x(t)$ is a solution of Eq. (1.6) such that $x(a)=x(b)=0$ and $x(t) \neq 0$ for $t \in(a, b)$. If there exists $a \xi \in[a, b]$ such that $x^{\prime \prime}(\xi)=0$, then

$$
\int_{a}^{b}|q(t)| d t>\frac{4}{(b-a)^{2}}
$$

(b) Let $-\infty<a<b<c<\infty$ and $q \in C([a, c], \mathbb{R})$. Assume $x(t)$ is a solution of Eq. (1.6) with $x(a)=x(b)=x(c)=0$ and $x(t) \neq 0$ for all $t \in(a, b) \cup(b, c)$. Then

$$
\int_{a}^{c}|q(t)| d t>\frac{4}{(c-a)^{2}}
$$

This result was further extended to general nth order linear equations by Yang [9], Cekmak [10], and Yang and Lo [11], and Zhang and He [12]. For more Liapunov-type inequalities, we refer the reader to Guseinov and Kaymakcalan [13] and Guseinov and Zafer [14] for linear Hamiltonian systems; to Pachpatte [15], Tiryaki, Unal and Cekmak [16,17], and Cekmak [18] for nonlinear equations and systems; and to Jiang and Zhou [19] and Unal and Cekmak [20] for equations and systems on time scales.

An extension of the Liapunov inequality to the second-order half-linear differential equations was done by Elbert [21] and Dosly and Rehak [22]. Consider the equation

$$
\begin{equation*}
\left(r(t) \phi_{\lambda}\left(x^{\prime}\right)\right)^{\prime}+q(t) \phi_{\lambda}(x)=0 \tag{1.7}
\end{equation*}
$$

where $q, r \in C([a, b], \mathbb{R})$ such that $r(t)>0$ for $t \in[a, b]$, and $\phi_{\lambda}(x)=|x|^{\lambda-1} x$ with $\lambda>0$. We state their result in the next theorem.

Theorem 1.4. Assume $x(t)$ is a solution of Eq. (1.7) such that $x(a)=x(b)=0$ and $x(t) \neq 0$ for $t \in(a, b)$. Then

$$
\begin{equation*}
\int_{a}^{b} q_{+}(t) d t>\frac{2^{\lambda+1}}{\left(\int_{a}^{b} r^{-\frac{1}{\lambda}}(t) d t\right)^{\lambda}} \tag{1.8}
\end{equation*}
$$

However, Liapunov-type inequalities have not been well-developed for higher-order half-linear differential equations. This is due to the complexity caused by the nonlinear nature of the Laplacian operators in the equation.

In this paper, we will establish Liapunov-type inequalities for third-order half-linear equations. We point out that our inequalities utilize integrals of both $q_{+}(t)$ and $q_{-}(t)$, the positive and negative parts of $q(t)$; which is different from most existing results for higher-order cases, where integrals of $|q(t)|$ are involved. As a special case, our work improves the result in Theorem 1.3 for the linear case.

https://daneshyari.com/en/article/839745

Download Persian Version:

https://daneshyari.com/article/839745

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: dhar@math.niu.edu (S. Dhar), kong@math.niu.edu (Q. Kong).

