

Contents lists available at ScienceDirect

Nonlinear Analysis

Positive solutions for some indefinite nonlinear eigenvalue elliptic problems with Robin boundary conditions

Humberto Ramos Quoirin^a, Antonio Suárez^{b,*}

- ^a Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile
- ^b Universidad de Sevilla, Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Calle Tarfia s/n, 41012-Sevilla, Spain

ARTICLE INFO

Article history: Received 30 June 2014 Accepted 4 November 2014 Communicated by Enzo Mitidieri

MSC: 35B32

35B51

35J60

Keywords: Elliptic equations Indefinite weight Robin boundary conditions

ABSTRACT

We consider a nonlinear eigenvalue problem with indefinite weight under Robin boundary conditions. We prove the existence and multiplicity of positive solutions. To this end, we carry out a detailed study of some linear eigenvalues problems and we use mainly bifurcation and sub–supersolution methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Let $\Omega\subset\mathbb{R}^N, N\geq 2$, be a bounded domain with a $C^{2,\gamma}$ boundary, $0<\gamma<1$. We are interested in the existence and stability properties of positive solutions for the problem

$$\begin{cases}
-\Delta u = \lambda m(x)(u - u^2) & \text{in } \Omega, \\
\frac{\partial u}{\partial u} = \alpha u & \text{on } \partial \Omega,
\end{cases}$$
(P)

where λ , $\alpha \in \mathbb{R}$, $m \in C^1(\overline{\Omega})$ changes sign and ν is the outward unit normal to $\partial \Omega$. Throughout this article we assume that

$$\int_{\Omega} m < 0, \tag{1}$$

since the case $\int_{\Omega} m > 0$ reduces to (1) changing λ by $-\lambda$. The case $\int_{\Omega} m = 0$ is singular and will be treated elsewhere. We shall treat (P) by a bifurcation approach, so we shall consider the linear eigenvalue problem

$$\begin{cases} -\Delta u = \lambda m(x)u & \text{in } \Omega, \\ \frac{\partial u}{\partial u} = \alpha u & \text{on } \partial \Omega. \end{cases}$$
 (E)

E-mail addresses: humberto.ramos@usach.cl (H. Ramos Quoirin), suarez@us.es (A. Suárez).

^{*} Corresponding author.

Fig. 1. Bifurcation diagrams of (P): Case (a) $\alpha < 0$ and Dirichlet boundary conditions. Case (b) $\alpha = 0$.

It is known by [1] that there exists $\alpha_0^* > 0$ such that (E) possesses two principal eigenvalues, denoted by $\lambda_1^-(\alpha)$ and $\lambda_1^+(\alpha)$, for $\alpha < \alpha_0^*$. In the homogeneous Dirichlet boundary conditions case, we denote them by $\lambda_1^\pm(D)$. In Section 2 we recall the results from [1] and complement them providing an expression for α_0^* .

Let us note that (P) has already been studied in different cases. For the cases $\alpha < 0$ (cf. [7]) and Dirichlet boundary conditions (cf. [2,11]), it has been proved that (P) has a positive solution for all $\lambda \neq 0$ and, under further conditions for a priori bounds, at least two positive solutions for $\lambda \in (-\infty, \lambda_1^-(\alpha)) \cup (\lambda_1^+(\alpha), +\infty)$ and $\lambda \in (-\infty, \lambda_1^-(D)) \cup (\lambda_1^+(D), +\infty)$, respectively. See Fig. 1(a) for the bifurcation diagram in these cases.

The case $\alpha=0$, which has been analyzed in [6] (see also [14,17]), is singular in the following sense: the trivial solutions $u\equiv 0$ and $u\equiv 1$ exist for all $\lambda\in\mathbb{R}$, and for $\lambda=0$ the positive constants are solutions. Moreover, for $\lambda\in(-\infty,-\lambda_1^+(0))\cup(\lambda_1^+(0),+\infty)$ there exists a stable solution u<1, which is the only positive solution of (P) less than one, see Fig. 1(b). Recall that in this case $\lambda_1^-(0)=0$.

Finally, the case $\alpha > 0$ and small was studied in [7]. Assuming 2 < (N+2)/(N-2) and using variational methods, the authors proved that if $0 < \alpha < \alpha_0^*$ and $\lambda \in (\lambda_1^+(\alpha), \lambda_1^+(\alpha))$ then (P) possesses at least a positive solution.

In this article, we adopt a different viewpoint, namely, we fix λ and look at α as a bifurcation parameter. Consequently, we improve some results of [6] for $\alpha = 0$, and complement the study of (P) when $\alpha > 0$.

We shall assume that

$$M_+ := \{ x \in \Omega : m^{\pm} > 0 \}$$

are open and regular sets; here $m^{\pm} = \max\{\pm m, 0\}$. We shall also assume that $m^{\pm}(x) \approx [\operatorname{dist}(x, \partial M_{\pm})]^{\gamma^{\pm}}$ for x close to ∂M_{\pm} and some $\gamma_{\pm} \geq 0$.

Let

$$M_0 := \Omega \setminus (\overline{M_+} \cup \overline{M_-}). \tag{2}$$

We assume the following conditions on M_{\pm} and M_0 :

$$M_0$$
 is a proper subdomain of Ω , i.e. $dist(\partial \Omega, \partial M_0 \cap \Omega) > 0$. (H_{Mo})

$$\partial M_{\pm} = \Gamma_1^{\pm} \cup \Gamma_2^{\pm}, \quad \text{with } \Gamma_1^{\pm} = \partial \Omega \cap \partial M_{\pm} \text{ and } \Gamma_2^{\pm} \subset \Omega.$$
 (H_{M+})

In fact, $(H_{M_{\pm}})$ is assumed to avoid regularity issues, see [12]. Two examples of domains satisfying the above conditions are depicted in Fig. 2.

Our first result is related to a priori bounds for positive solutions of (P). We show that if

$$2 < \min\left\{\frac{N+2}{N-2}, \ \frac{N+1+\gamma^{\pm}}{N-1}\right\},\tag{3}$$

then, there exist a priori bounds for positive solutions of (P) whenever α varies in compact sets of \mathbb{R} .

In order to state our main results, we need to introduce some further notation. We denote by $\lambda_1(-\Delta - \lambda m, N)$ and $\lambda_1(-\Delta - \lambda m, D)$ the principal eigenvalues of the problem

$$-\Delta\varphi - \lambda m(x)\varphi = \sigma\varphi \quad \text{in } \Omega,$$

under homogeneous Neumann and Dirichlet boundary conditions, respectively. In Section 2, we show that given $\lambda \in \mathbb{R}$, there exists a principal eigenvalue of (E) with respect to α , denoted by $\alpha_1(\lambda)$, if and only if $\lambda_1(-\Delta - \lambda m, D) > 0$. Furthermore, $sign(\alpha_1(\lambda)) = sign(\lambda_1(-\Delta - \lambda m, N))$.

Note that if $\lambda=0$ then (P) has no positive solutions unless $\alpha=0$, in which case the positive constants are solutions. So we assume that $\lambda\neq 0$ throughout this article.

We state now our main results (see Fig. 3):

Download English Version:

https://daneshyari.com/en/article/839754

Download Persian Version:

https://daneshyari.com/article/839754

<u>Daneshyari.com</u>