
Nonlinear Analysis 114 (2015) 116–132

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Leggett–Williams type theorems with applications to
nonlinear differential and integral equations
Dariusz Bugajewski, Piotr Kasprzak ∗

Optimization and Control Theory Department, Faculty of Mathematics and Computer Science, Adam Mickiewicz University,
ul. Umultowska 87, 61-614 Poznań, Poland

a r t i c l e i n f o

Article history:
Received 27 May 2014
Accepted 6 November 2014
Communicated by S. Carl

MSC:
47H10
47H30
45H30
45M20
34B18
45G15
45N05

Keywords:
Absolute retract
Coupled fixed point
Fixed point theorem
Hammerstein integral equation
Invariant direction
Measure of noncompactness
Ordered Banach space
Rδ-set
Reflection operator
System of Hammerstein equations
Two-point boundary value problem

a b s t r a c t

The aim of this article is to prove a few Leggett–Williams type theorems, in particular for a
more general class of mappings than compact ones. We examine also invariant directions
which satisfy a certain additional condition formulated in terms of a given seminorm. As
applications of these results we prove a few existence results concerning positive solutions
to Hammerstein integral equations or to a two-point boundary value problem.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the classical results concerning the existence of positive invariant directions for compactmappings is the following
theorem which originates from the work of Birkhoff and Kellogg [6].

Theorem 1. Let U be a bounded open neighborhood of θ in an infinite-dimensional normed space E, and let F : ∂U → E be a
compact mapping with ∥F(x)∥ ≥ δ > 0 for all x ∈ ∂U. Then F has an invariant direction, i.e. there is x ∈ ∂U and λ > 0 such
that F(x) = λx.
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The original result due to Birkhoff and Kellogg was established in a special case of the space of continuous real-valued
functions defined on the unit interval, endowed with the L2-norm, and the general case, according to our knowledge, was
first stated by Schauder in a footnote in the paper [24] (the above formulation is cited after [13, Theorem 6.1, p. 62]).

An essential generalization of the Birkhoff–Kellogg criterion (in the version of Riedrich [21]) was established e.g. by
Kryszewski (see [17, Theorem 3.1]). Since in this paper we are going to work mainly in ordered normed space, we recall
another result established by Kryszewski in the same paper, which concerns invariant directions for positive mappings.

Theorem 2 ([17, Theorem 4.1]). Let E be an ordered Hausdorff topological vector space with a positive closed cone CE being
admissible. Suppose that D is a closed and star-shaped neighborhood of θ in E such that ∂D∩CE ≠ ∅, and that F : ∂D∩CE → CE
is a positive compact operator for which there exists y ∈ CE \ AD, where AD =


t>0 tD, such that

F(∂D ∩ CE) ∩ {x ∈ E : x ∈ ty + (AD ∩ CE), t ≤ 0} = ∅.

Then there exist x0 ∈ CE \ {θ} and λ0 > 0 such that F(x0) = λ0x0.

It seems that from the point of view of possible applications, a little more convenient than Theorem 2 is the result due
to Leggett and Williams [18] from 1977 (see Theorem 3 in Section 3).

All the above-mentioned results concern compact mappings satisfying some additional assumptions. The initial point of
this paper is to prove some extensions of the Leggett–Williams theorem to a more general class of mappings than compact
ones.We are going also to examine invariant directions satisfying some additional conditions formulated in terms of a given
continuous seminorm. Let us recall that in the original Leggett–Williams theorem such an additional condition is stated in
terms of a continuous, additive and positively homogeneous functional.

Another extension of the Leggett–Williams theorem to coupled invariant directionswas proved by Borkar and Patil in [7].
In Section 4wepresent a short proof of their result based on an application of the so-called reflection operator. It appears that
in the coupled fixed point theory, reflection operators play an important role, that is, in that theory even quite sophisticated
topological results can be quite easily proved with the help of such operators. In particular, in Section 4 we establish also a
Vidossich type theorem for coupled fixed point sets for Volterra type operators by using reflection operators.

It appears that Leggett–Williams type theorems are useful tools to examine positive solutions to nonlinear differential
and integral equations. In the second part of the paper we provide several applications of these theorems to results
concerning the existence of positive solutions to Hammerstein integral equations (in finite dimensional spaces as well as in
abstract Banach lattices), systems of Hammerstein equations and two-point boundary value problems.

2. Preliminaries

In this section we fix notation and recall some basic definitions and facts which will be used in the sequel.
By I throughout the paper we will denote a compact interval [0, d] ⊂ R. Moreover, by µn we will denote the

n-dimensional Lebesgue measure. If no confusion can arise, we will write simply µ.
We denote by D and ∂D the closure and boundary of the set D, respectively.
Let (E, ∥·∥) be a normed space and let |·| be a continuous seminorm on E. By θE (or simply by θ ) we will denote the

zero element of E. By BE(x, r) and B|·|(x, r) we will denote the closed ball in E centered at x and with radius r > 0,
taken with respect to the norm ∥·∥ and the seminorm |·|, respectively. Similarly, by S|·|(x, r) we will denote the sphere
{y ∈ E : |x − y| = r}.

By Lp(Ω), where 1 ≤ p < +∞ and Ω is a Lebesgue measurable subset of Rn, we will denote the Banach space of all
complex-valued functions which are Lebesgue integrable with pth power. Moreover, if Ω is an open and bounded subset
of Rn, then by C(Ω, R) we will denote the Banach space of all continuous real-valued functions defined on Ω , endowed
with the supremum norm ∥·∥∞. Similarly, if K is a bounded and convex subset of a normed space and E is a Banach space,
then by BC(K , E) we will denote the Banach space of all bounded and continuous functions from K to E, endowed with
the supremum norm. In particular, if K = I , then instead of BC(K , E) we will write C(I, E). Finally, the Banach algebra of
continuous linear endomorphisms of E will be denoted by L(E).

The symbol ‘

’ denotes both the Lebesgue integral and the Bochner integral, if scalar- and vector-valued mappings are

considered, respectively. (For basic properties of strongly measurable mappings and Bochner integrable mappings we refer
the reader to [12].)

Now, we are going to recall some definitions concerning partially ordered structures.

Definition 1 (Cf. [18, p. 249]). Let E be a real normed space. A non-empty closed and convex set CE ≠ {θ} contained in E is
called a (positive) cone if the following conditions are satisfied:

(a) if x ∈ CE , then λx ∈ CE whenever λ ≥ 0;
(b) if x ∈ CE and −x ∈ CE , then x = θ .

Notation. If CE is a cone in a normed space E, then by CE(θ, r) we will denote the intersection of CE and BE(θ, r), that is,
CE(θ, r) := CE ∩ BE(θ, r).
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