Contents lists available at SciVerse ScienceDirect

Toxicon

journal homepage: www.elsevier.com/locate/toxicon

oxico

Christopher O. Miles ^{a,*}, Morten Sandvik^a, Hezron E. Nonga^{b,c}, Thomas Rundberget^a, Alistair L. Wilkins^{a,d}, Frode Rise^e, Andreas Ballot^{a,f}

^a Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway

^b Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania

^c Norwegian School of Veterinary Science, P.O. Box 8146 Dep., N-0033 Oslo, Norway

^d Chemistry Department, University of Waikato, Private Bag 3105, Hamilton, New Zealand

^e Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway

^fNorwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway

ARTICLE INFO

Article history: Received 12 November 2012 Received in revised form 5 March 2013 Accepted 18 March 2013 Available online 6 April 2013

Keywords: Microcystin Microcystis Africa Lake Victoria LC-MS Thiol derivatization

ABSTRACT

Microcystins are cyclic heptapeptides from cyanobacteria which are responsible for poisonings of livestock and humans. Cyanobacteria also produce a range of peptides and other compounds that can result in complex chromatograms when samples are analysed by LC-MS. Thiol derivatization of the α,β -unsaturated amide present in most microcystins was recently shown to simplify analysis of LC-MS chromatograms of a Microcystis culture. making it easier to identify peaks corresponding to microcystins in complex mixtures. This method was applied to analysis of extracts taken from a natural cyanobacteria bloom in Mwanza Gulf, Lake Victoria, Tanzania, in 2010, revealing the presence of numerous putative microcystin analogues in the sample. Results were verified using LC-MS², LC-MS/MS with precursor-ion scanning, and LC-HRMS, leading to identification of 8 major and 17 minor microcystins in the sample, including analogues of microcystin-RY, -RL and -RA. Microcystin-YR (2), -RR (3), and -RY (9) were isolated from bloom material from Lake Victoria, and the structure of 9 was confirmed by NMR spectroscopic analysis and NMR spectral comparison with 2 and 3. Confirmation of the structure of MC-RY (9) facilitated detailed analysis of its MS² spectrum, thereby supporting the structures of related analogues tentatively established on the basis of MS analyses.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

[★] This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Corresponding author. Tel.: +47 2321 6226; fax: +47 2321 6201. *E-mail address*: chris.miles@vetinst.no (C.O. Miles).

1. Introduction

Microcystins (Fig. 1) are a group of more than 80 cyclic heptapeptide hepatotoxins produced by some freshwater cyanobacteria in the genera *Microcystis, Anabaena, Nostoc,* and *Planktothrix* (Codd et al., 1999; Sivonen and Jones, 1999; Welker and von Döhren, 2006). Microcystins are usually cell-bound in healthy cyanobacterial cells, but cell lysis can occur in senescent blooms leading to release of toxins into the surrounding water. Poisoning of wild and domesticated animals and humans has occurred due to the ingestion of microcystins. Microcystins can therefore be found in raw

0041-0101/\$ – see front matter @ 2013 The Authors. Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.toxicon.2013.03.016

Abbreviations: Aba, aminobutyric acid; Adda, 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid; Apa, aminopropionic acid; Dha, dehydroalanine; Dhb, dehydrobutyrine; HRMS, high-resolution mass spectrometry; Mdha, *N*-methyldehydroalanine; Mdhb, *N*-methyldehydrobutyrine; MEMHEG, *O*-(2-mercaptoethyl)-*O*'-methyl-hexa(-ethylene glycol); Mser, *N*-methylserine.

Fig. 1. Structures of microcystin analogues discussed in the text, with the seven amino acid residues labelled 1–7, and showing the Adda-fragmentation (m/z 135 and [MH–134]⁺). Amino acid variations in the structures were present at sites 2–4 and 7, and these are indicated with standard 3-letter amino acid abbreviations (with the exception of (MeO)Tyr = methoxytyrosine at position 4, Adda = 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid at position 5, and Mdha = N-methyldehydroalanine, Dha = Dehydroalanine, and Mser = N-methylserine at position 7). **1–8** were available commercially as standards, and **9** was isolated and its structure verified by NMR spectroscopy.

and treated water samples, bloom material, fish and other animal tissues, as well as other types of biological materials (Sivonen and Jones, 1999). This can make microcystin analysis more difficult due to the presence of compounds from a range of cyanobacteria and algae, as well as the matrix components of the sample being analysed.

Derivatization of cyanobacterial samples with appropriate thiols has been shown to be useful in identifying [Mdha⁷]- and [Dha⁷]-microcystins during LC–MS analysis (Miles et al., 2012). Reaction with either mercaptoethanol or *O*-(2-mercaptoethyl)-*O*'-methyl-hexa(ethylene glycol) (MEMHEG) (**a** and **b**, respectively, in Fig. 2) proceeded rapidly and specifically, labelling reactive microcystins with extra mass (78 and 356 Da, respectively) in residue-7 (Fig. 2).

The Mdhb-containing cyanotoxin nodularin did not react, suggesting that this procedure may be capable of differentiating between microcystins containing the isobaric amino acids Mdha (thiol-reactive) and Dhb (unreactive) at position-7 by LC–MS—without the need to resort to purification followed amino acid analysis or NMR spectroscopy. Mass spectral fragmentation of both the underivatized and thiolderivatized microcystins was shown to give structurally informative fragments, including a fragment with m/z of [MH–134]⁺ (i.e. Adda fragmentation, Fig. 1), during LC–MS² analysis with an ion trap mass spectrometer.

The potential utility of this approach was illustrated during method development, where application of the thiol-derivatization procedure resulted in identification of Download English Version:

https://daneshyari.com/en/article/8397595

Download Persian Version:

https://daneshyari.com/article/8397595

Daneshyari.com