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a b s t r a c t

The coupled Navier–Stokes and Q-tensor system is considered in a bounded three-
dimensional domain under homogeneous Dirichlet boundary conditions for the velocity u
and either nonhomogeneous Dirichlet or homogeneous Neumann boundary conditions for
the tensor Q . The corresponding initial-value problem in the whole space R3 was analyzed
in Paicu and Zarnescu (2012).

In this paper, three main results concerning weak solutions will be proved: the exis-
tence of global in time weak solutions (bounded up to infinite time), a uniqueness criteria
and amaximumprinciple forQ . Moreover, we identify how tomodify the system to deduce
symmetry and traceless for Q , for any weak solution. The presence of a stretching term in
the Q -system plays a crucial role in all the analysis.

© 2014 Elsevier Ltd. All rights reserved.

1. The Q -tensor system and main results

1.1. The model

Liquid crystals can be seen as an intermediate phase of matter between crystalline solids and isotropic fluids. Nematic
liquid crystals (N) consist ofmoleculeswith, for instance, rod-like shapewhose center ofmass is isotropically distributed and
whose direction is almost constant on average over small regions. Several models of (N) are described through the velocity
and pressure (u, p) and a director vector denoted by d or n (cf. [8,13]).

The optical behavior of liquid crystals can change from one point to the other and can be of different types, namely
uniaxial (points having one single refractive index and a unit-vector field n(x) ∈ S2 represents the preferred direction of
molecular alignment), biaxial (points having two indices of refraction, with more than one preferred direction of molecular

∗ Corresponding author. Tel.: +34 95 4557010; fax: +34 95 4552898.
E-mail addresses: guillen@us.es (F. Guillén-González), angeles@us.es (M.Á. Rodríguez-Bellido).

http://dx.doi.org/10.1016/j.na.2014.09.011
0362-546X/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.na.2014.09.011
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2014.09.011&domain=pdf
mailto:guillen@us.es
mailto:angeles@us.es
http://dx.doi.org/10.1016/j.na.2014.09.011


F. Guillén-González, M.Á. Rodríguez-Bellido / Nonlinear Analysis 112 (2015) 84–104 85

alignment) or isotropic (points where the orientation of molecules is equally distributed in all directions). The two main
continuum theories for nematic liquid crystals (cf. [8,3,6]) are: the Oseen–Frank theory, restricted to uniaxial nematic liquid
crystal materials, and the more general Landau–De Gennes theory, which can account the three types of optic for (N):
uniaxial, biaxial and isotropic phases.

In the Landau–De Gennes theory, the director vector d appearing in the Oseen–Frank theory is replaced by a symmetric
and traceless matrix Q ∈ R3×3, known as the Q -tensor order parameter, which measures the deviation of the second
moment tensor from its isotropic value. A nematic liquid crystal is said to be isotropic when Q = 0, uniaxial when the
Q -tensor has two equal non-zero eigenvalues and can be written in the special form:

Q (x) = s

n(x)⊗ n(x)−

1
d

I


with s ∈ R \ {0}, n ∈ S2

and biaxial when Q has three different eigenvalues and can be represented as follows (see Proposition 1 in [14]):

Q = s

n ⊗ n −

1
d

I


+ r

m ⊗ m −

1
d

I


s, r ∈ R; n,m ∈ S2.

The definition of theQ -tensor is related to the secondmoment of a probabilitymeasureµ(x, ·) : L(S2) → [0, 1] for each
x ∈ Ω , beingL(S2) the family of Lebesguemeasurable sets on the unit sphere. For any A ⊂ S2,µ(x, A) is the probability that
the molecules with center of mass in a very small neighborhood of the point x ∈ Ω are pointing in a direction contained in
A. This probability (cf. [21]) must satisfy µ(x, A) = µ(x,−A) in order to reproduce the so-called ‘‘head-to-tail’’ symmetry.
As a consequence, the first moment of the probability measure vanishes, that is

⟨p⟩(x) =


S2

pi dµ(x, p) = 0.

Then, the main information on µ comes from the second moment tensor

M(µ)ij =


S2

pi pj dµ(p), i, j = 1, 2, 3.

It is easy to see that M(µ) = M(µ)t and tr(M) = 1. If the orientation of the molecules is equally distributed, then the
distribution is isotropic and µ = µ0, dµ0(p) =

1
4π dA and M(µ0) =

1
3 I. The deviation of the second moment tensor from

its isotropic value is therefore measured as:

Q = M(µ)− M(µ0) =


S2


p ⊗ p −

1
3

I


dµ(p). (1)

From (1), Q is symmetric and traceless. These properties are assumed (but not rigorously justified) in the problem studied
by Paicu and Zarnescu in [15] and Abels et al. in [1] (and in the more complete problem studied by the same authors in
[16,2], respectively). These equations are also described in [9,19] for fluids with constant density.

Now, firstly a generalization of the Q -tensor model given in [15] will be studied, and secondly some terms of this generic
model will be rewritten appropriately to assure that any weak solution must be symmetric and traceless.

We are going to start studying a generic Q -tensor model in a smooth and bounded domainΩ ⊂ R3, for the unknowns
(u, p,Q ) : (0, T )×Ω → R3

× R × R3×3, satisfying the momentum and incompressibility equations
Dtu − ν1u + ∇p = ∇ · τ(Q )+ ∇ · σ(H,Q ) inΩ × (0, T ),
∇ · u = 0 inΩ × (0, T ), (2)

and the Q -tensor system:

DtQ − S(∇u,Q ) = −γ H(Q ) inΩ × (0, T ). (3)

Here, Dt = ∂t + (u · ∇) denotes the material time derivative, ν > 0 is the viscosity coefficient and γ > 0 is a material-
dependent elastic constant.

In (3), S(∇u,Q ) = ∇uQ t
− Q t

∇u is the so-called stretching term.
In (2) the tensors τ = τ(Q ) and σ = σ(H,Q ) ∈ R3×3 are defined by

τij(Q ) = −ε

∂jQ : ∂iQ


= −ε ∂jQkl ∂iQkl, ε > 0 (symmetric tensor)

σ(H,Q ) = H Q − Q H (antisymmetric if Q and H are symmetric),
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