Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

The existence of a pullback attractor for the three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation

Bo You^{a,*}, Fang Li^b

^a School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China ^b Department of Mathematics, Nanjing University, Nanjing, 210093, PR China

ARTICLE INFO

Article history: Received 18 March 2014 Accepted 27 August 2014 Communicated by Enzo Mitidieri

MSC: 35B41 35035 37N10

Keywords: Pullback attractor Planetary geostrophic viscous equations Non-autonomous Asymptotic a priori estimates

1. Introduction

In this paper, we consider the regularity of the pullback attractor for the following three dimensional non-autonomous planetary geostrophic equations of large-scale ocean circulation (see [16,18])

$\nabla p + fk \times v + \epsilon L_1 v = 0,$	(1.1)
0 m	

$$\frac{\partial p}{\partial z} + T = 0, \tag{1.2}$$

$$\nabla \cdot v + \frac{\partial w}{\partial z} = 0, \tag{1.3}$$

$$\frac{\partial I}{\partial t} + v \cdot \nabla T + w \frac{\partial I}{\partial z} + L_2 T = Q$$
(1.4)

in the domain

 $\Omega = M \times (-h, 0) \subset \mathbb{R}^3,$

http://dx.doi.org/10.1016/j.na.2014.08.018 0362-546X/© 2014 Elsevier Ltd. All rights reserved.

Nonlinear Analysis

ABSTRACT

In this paper, we prove the existence of a pullback attractor in $H^2(\Omega)$ for the process $\{U(t, \tau)\}_{t>\tau}$ associated with the three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation by asymptotic a priori estimates. © 2014 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +86 18702901967.

E-mail addresses: youb03@126.com, youb2013@mail.xjtu.edu.cn (B. You), lifang101216@126.com (F. Li).

where $M \subset \mathbb{R}^2$ is a bounded domain with smooth boundary ∂M , h > 0 is the depth of the ocean. The unknown functions in the planetary geostrophic equations are the velocity field $(v, w) = (v_1, v_2, w) = (v_1(x, y, z, t), v_2(x, y, z, t), w(x, y, z, t))$, the pressure p(x, y, z, t) and the temperature function T(x, y, z, t). The given function $f = f_0(\beta + y)$ is the Coriolis parameter, $\epsilon > 0$ is a small constant, Q(x, y, z, t) is a heat source.

Throughout this paper, we denote the two-dimensional horizontal gradient, Laplacian by ∇ , Δ , respectively, and the operators L_1 and L_2 are given by

$$L_{1} = -A_{h}\Delta - A_{\nu}\frac{\partial^{2}}{\partial z^{2}},$$
$$L_{2} = -K_{h}\Delta - K_{\nu}\frac{\partial^{2}}{\partial z^{2}},$$

where A_h , A_v are positive molecular viscosity constants and K_h , K_v are positive conductivity constants. For simplicity, let Γ_u be the upper boundary of Ω , let Γ_l be the lateral boundary of Ω and let Γ_b be the bottom boundary of Ω , i.e.,

$$\begin{split} &\Gamma_u = \{(x, y, z) \in \bar{\Omega} : z = 0\}, \\ &\Gamma_l = \{(x, y, z) \in \bar{\Omega} : (x, y) \in \partial M, -h \le z \le 0\}, \\ &\Gamma_b = \{(x, y, z) \in \bar{\Omega} : z = -h\}. \end{split}$$

Eqs. (1.1)-(1.4) are subject to the following boundary conditions with wind-driven on the top surface, nonslip and non-flux on the side walls and bottom (see [12,18])

$$A_{\nu}\frac{\partial v}{\partial z}\Big|_{\Gamma_{u}} = \mu, \qquad w|_{\Gamma_{u}} = 0, \qquad \left(K_{\nu}\frac{\partial T}{\partial z} + \alpha(T - T^{*})\right)\Big|_{\Gamma_{u}} = 0, \tag{1.5}$$

$$\frac{\partial v}{\partial z}\Big|_{\Gamma_b} = 0, \qquad w|_{\Gamma_b} = 0, \qquad \frac{\partial T}{\partial z}\Big|_{\Gamma_b} = 0,$$
(1.6)

$$v \cdot \vec{n}\Big|_{\Gamma_l} = 0, \qquad \frac{\partial v}{\partial \vec{n}} \times \vec{n}\Big|_{\Gamma_l} = 0, \qquad \frac{\partial T}{\partial \vec{n}}\Big|_{\Gamma_l} = 0$$
(1.7)

and initial condition

$$T(x, y, z, \tau) = T_{\tau}(x, y, z), \tag{1.8}$$

where $\mu(x, y)$ is the wind stress, \vec{n} is the normal vector on Γ_l , $T^*(x, y)$ is the typical temperature of the top surface and α is a positive constant.

Due to the boundary conditions (1.5)-(1.7), it is natural to assume that T^* satisfies the compatibility boundary condition

$$\left. \frac{\partial T^*}{\partial \vec{n}} \right|_{\partial M} = 0. \tag{1.9}$$

The planetary geostrophic equations are derived from the Boussinesq equations for the planetary scale ocean by using standard scale analysis (see [13,12,14,15,21]). During the past several decades, many authors have considered the wellposedness of weak solutions and strong solutions, the long-time behavior of solutions for the three dimensional autonomous planetary geostrophic viscous equations of large-scale ocean circulation (see [2,16,17]). In [16], the authors proved the existence of global (in time) weak solutions for the three dimensional autonomous planetary geostrophic viscous equations of large-scale ocean circulation under the assumptions $Q \in L^2(\Omega)$, $\mu \in L^2(M)$, $T^* \in L^2(M)$ and $T_0 \in L^2(\Omega)$. The existence of global strong solutions for the three dimensional autonomous planetary geostrophic viscous equations of large-scale ocean circulation was proved in [17] by using the fact that the maximum principle on T was established in [6] under the assumption $T_0 \in L^{\infty}(\Omega)$ or $T_0 \in H^2(\Omega)$. However, in [2], under stronger conditions than [16], namely $Q \in L^2(\Omega)$, $\mu \in H_0^1(M)$, $T^* \in H^2(M)$ and $T_0 \in L^2(\Omega)$, the authors proved the well-posedness of weak solutions for the three dimensional autonomous planetary geostrophic viscous equations of large-scale ocean circulation and obtained the existence of global strong solutions for the three dimensional autonomous planetary geostrophic viscous equations of largescale ocean circulation under weaker conditions than [17], i.e., $Q \in H^1(\Omega)$, $\mu \in H^1_0(M)$, $T^* \in H^2(M)$ and $T_0 \in H^1(\Omega)$. Meanwhile, the authors proved the existence of a finite dimensional global attractor in $H \subset L^2(\Omega)$ for the three dimensional autonomous planetary geostrophic viscous equations of large-scale ocean circulation by the Sobolev compactness embedding theorem. In [23], the authors proved the existence of global attractors in V and $H^2(\Omega)$ for the three dimensional autonomous planetary geostrophic viscous equations of large-scale ocean circulation by the Sobolev compactness embedding theorem and asymptotic a priori estimates, respectively.

Download English Version:

https://daneshyari.com/en/article/839772

Download Persian Version:

https://daneshyari.com/article/839772

Daneshyari.com