Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

An asymmetric superlinear elliptic problem at resonance

Leandro Recôva^a, Adolfo Rumbos^{b,*}

^a Claremont Graduate University, Claremont, CA, USA

^b Pomona College, Claremont, CA, USA

ARTICLE INFO

Article history: Received 4 June 2014 Accepted 17 September 2014 Communicated by Enzo Mitidieri

Keywords: Critical groups Resonance Morse theory

ABSTRACT

In this article, we study the existence and multiplicity of solutions to the problem

 $\begin{cases} -\Delta u = g(x, u), & \text{in } \Omega; \\ u = 0, & \text{on } \partial \Omega, \end{cases}$

where Ω is a bounded domain in $\mathbb{R}^N (N \ge 2)$ with smooth boundary, and $g : \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ is a differentiable function. We will assume that g(x, s) has a resonant behavior for large negative values of *s* and that a Landesman–Lazer type condition is satisfied. We also assume that g(x, s) is superlinear, but subcritical, for large positive values of *s*. We prove the existence and multiplicity of solutions for problem (1.1) by using minimax methods and infinite-dimensional Morse theory.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The goal of this paper is to study the existence and multiplicity of solutions of the following boundary value problem

$$\begin{cases} -\Delta u = g(x, u), & \text{in } \Omega; \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$
(1.1)

where Δ denotes the *N*-dimensional Laplacian, $\Omega \subset \mathbb{R}^N$, for $N \ge 2$, is an open bounded set with a smooth boundary, $\partial \Omega$, and $g : \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ a differentiable function. By a solution of (1.1) we mean a weak solution, i.e., a function $u \in H_0^1(\Omega)$ satisfying

$$\int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} g(x, u) v dx, \tag{1.2}$$

for any $v \in H_0^1(\Omega)$, where $H_0^1(\Omega)$ is the Sobolev space obtained through completion of $C_c^{\infty}(\Omega)$ with respect to the metric induced by the norm

$$||u|| = \left(\int_{\Omega} |\nabla u|^2 dx\right)^{\frac{1}{2}}, \text{ for all } u \in H^1_0(\Omega).$$

http://dx.doi.org/10.1016/j.na.2014.09.019 0362-546X/© 2014 Elsevier Ltd. All rights reserved.

^{*} Correspondence to: Pomona College, Mathematics, 610 N. College Avenue, 91711 Claremont, CA, USA. Tel.: +1 909 621 8409; fax: +1 909 607 1247. *E-mail addresses*: leandro.recova@ericsson.com (L. Recôva), arumbos@pomona.edu, arumbos@gmail.com (A. Rumbos).

Denote by $0 < \lambda_1 < \lambda_2 < \lambda_3 < \cdots$ the eigenvalues of the linear problem

$$\begin{cases} -\Delta u = \lambda u, & \text{in } \Omega; \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$
(1.3)

Assume the following conditions on the nonlinearity g and its primitive $G(x, s) = \int_0^s g(x, \xi) d\xi$, for $x \in \overline{\Omega}$ and $s \in \mathbb{R}$, are satisfied:

(*L*₁) $g \in C^1(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ with g(x, 0) = 0, $g'_s(x, 0) = \frac{\partial g}{\partial s}(x, 0) = \lambda_m$, $m \neq 1$. (*L*₂) There exists a constant σ such that $1 \leq \sigma < (N+2)/(N-2)$ for $N \ge 3$, or $1 \leq \sigma < \infty$ for N = 2, and

$$\lim_{s\to+\infty}\frac{g(x,s)}{s^{\sigma}}=0,$$

uniformly for a.e. $x \in \Omega$.

(*L*₃) There are constants $\mu > 2$ and $s_0 > 0$ such that

$$0 < \mu G(x, s) \leq sg(x, s), \text{ for } s \geq s_0 \text{ and } x \in \Omega.$$

 $(L_4) \ \tfrac{2N\sigma}{N+2} < \mu.$

s-

- (L_5) $\lim_{s \to -\infty} [g(x, s) \lambda_1 s] = g_{-\infty}(x)$, uniformly for a.e. $x \in \Omega$ with $g_{-\infty} \in L^{\infty}(\Omega)$ such that $|g_{-\infty}(x)| \le M$, for all $x \in \Omega$, and for some constant M > 0.
- (*L*₆) [Landesman–Lazer (LL) Condition]:

$$\int_{\Omega} g_{-\infty}(x)\varphi_1(x)dx > 0,$$

where φ_1 is a positive eigenfunction associated with the first eigenvalue of the $(-\Delta, H_0^1(\Omega))$, and $\|\varphi_1\| = 1$. (L_7) There exists $s_- < 0$ such that

$$2G(x, s) - g(x, s)s \leq 0$$
, for all $s \leq s_{-}$.

Condition (L_3) yields super-quadratic growth for G(x, s) for large positive values of s. Condition (L_5) implies that the problem (1.1) has a resonant behavior for large negative values of s, given that

$$\lim_{s\to -\infty}\frac{g(x,s)}{s}=\lambda_1,$$

as a consequence of (L_5) , where λ_1 is the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in Ω . The main results of this paper are the following:

Theorem 1.1. Let $(L_1)-(L_7)$ be satisfied. Then, problem (1.1) has a nontrivial solution.

Theorem 1.2. Suppose that g satisfies $(L_1)-(L_7)$. Assume also that there exists $t_0 > 0$ such that $g(x, t_0) = 0$ for all $x \in \Omega$. Then, problem (1.1) has at least three nontrivial solutions.

Conditions $(L_1)-(L_4)$ are similar to those imposed by de Figueiredo in [8] on a general class of superlinear elliptic problems of the type (1.1), with the additional hypothesis that $g'_{\lambda}(x, 0) = \lambda_m$, for $m \neq 1$, in (L_1) . Condition (L_5) is a version of the condition

$$\lim_{n \to -\infty} \frac{g(x, s) - \lambda s}{|s|^{\alpha}} = 0$$

where $\alpha = 0$ and $\lambda = \lambda_1$ in de Figueiredo [8]. This makes our problem into a resonant problem for large negative values of s. It is known in the literature on resonant problems that a solvability condition of the Landesman-Lazer type, for instance, is needed. In this paper, this condition is provided by (L_6) . Condition (L_6) is similar to that used by Cuesta et al. [7] in their study of the problem

$$\begin{cases} -\Delta u = \lambda_1 u + (u^+)^p + f(x), & \text{in } \Omega; \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.4)

where Ω is a bounded domain in \mathbb{R}^N with a smooth boundary $\partial \Omega$, $N \ge 3$, and $f \ne 0$ is a function satisfying $f \in L^r(\Omega)$ for some r > N and $1 . They proved that the problem (1.4) has a solution in <math>W^{2,r}(\Omega) \cap H^1_0(\Omega)$ under the assumption

$$\int_{\varOmega} f \varphi_1 < 0.$$

In this paper, we are also interested in studying a resonant-superlinear problem under the Landesman-Lazer type condition (L_6) . In our case, because of condition (L_1) , 0 is a degenerate critical point of the functional associated to problem (1.1). We Download English Version:

https://daneshyari.com/en/article/839777

Download Persian Version:

https://daneshyari.com/article/839777

Daneshyari.com