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In this paper, we obtain a uniform W 2,ε-estimate of solutions to the fully nonlinear
uniformly elliptic equations on Riemannian manifolds with a lower bound of sectional
curvature using the ABP method.
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1. Introduction

We study regularity estimates for solutions to a class of the fully nonlinear uniformly elliptic equations

F(D2u, x) = f in BR(z0) ⊂ M (1)

on a complete Riemannian manifoldM , where the operator F satisfies the hypothesis (H1). Under the assumption that sec-
tional curvature of the underlying manifold M is nonnegative, the Krylov–Safonov Harnack estimate [13] was initiated by
Cabré in his paper [2], where a priori global Harnack inequality for linear elliptic equations was established by obtaining
the Aleksandrov–Bakelman–Pucci (ABP) estimate onM . Later, Kim [10] improved Cabré’s result removing the sectional cur-
vature assumption and imposing the certain conditions on the squared distance function. Recently, Wang and Zhang [22]
proved a version of the ABP estimate on M with a lower bound of Ricci curvature, and hence a locally uniform Harnack in-
equality for nonlinear elliptic operators onM provided that the sectional curvature is bounded from below. A priori Harnack
estimate has been extended in [12] for viscosity solutions using the regularization of Jensen’s sup-convolution on Rieman-
nian manifolds. The Hölder continuity is obtained as an immediate consequence of the Harnack inequality. In [11,12], the
parabolic Harnack inequality and the ABP–Krylov–Tso type estimate were established on the Riemannian manifolds with a
lower curvature bound.

This paper is concernedwith a uniform estimate for second order derivatives of solutions to (1) on Riemannianmanifolds
with a nonpositive lower bound of sectional curvature. In the Euclidean space, a uniformW 2,ε-estimate (for some ε > 0) for
linear, nondivergent elliptic operators with measurable coefficients was first discovered by Lin [15]. It is known that for any
p ≥ 1, a uniformW 2,p-estimate for uniformly elliptic equations with measurable coefficients is not valid; see [16,19]. In [3]
and [4, Chapter 7], Caffarelli dealt with theW 2,ε-estimate for fully nonlinear elliptic operators with measurable coefficients
whose proof relies on the ABP estimate, where the ABP estimate proved by Aleksandrov, Bakelman, and Pucci in sixties has
played a crucial role in the Krylov–Safonov theory and in the development of the regularity theory for fully nonlinear elliptic
equations. On the other hand, W 2,p-estimates (n < p < +∞) of Calderón and Zygmund for linear elliptic operators with
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continuous coefficients were extended in [4] for convex fully nonlinear elliptic equations which are continuous in spatial
variables as a perturbation theory by accelerating a decay rate of the measure estimates for the Hessian of the solutions.
Based on the Calderón–Zygmund estimates, potential theoretic estimates for the fundamental solution to nondivergent
elliptic equations were established in [8], which turned out to be closely tied to the Harnack estimate.

In this paper, we investigate a uniform W 2,ε-regularity (for some ε > 0) for fully nonlinear elliptic operators on Rie-
mannian manifolds. Making use of the ABP type estimate on Riemannian manifolds, we follow Caffarelli’s approach under
the assumption that sectional curvature is bounded from below. It can be checked that a straightforward adaptation of the
Euclideanmethod yields theW 2,ε-estimate on Hadamardmanifolds which are complete and simply connected Riemannian
manifolds with nonpositive sectional curvature everywhere. In general, it is not applicable directly due to the existence
of the cut locus. Indeed, it is difficult to use the squared distance functions as global test functions as in the Euclidean
case. To proceed with the ABP method, we introduce the notion of the special contact set in Definition 3.14. The special
contact set consists of the points where the solution has a global tangent function from below, which is a sum of the bar-
rier functions constructed in Lemma 3.5 and squared distance functions. With the help of a standard scaling argument via
the Calderón–Zygmund technique, the notion of the special contact set enables us to employ an iterative procedure based
on the scale-invariant ABP type estimate in Proposition 3.15. Therefore we obtain a (locally) uniform W 2,ε-estimate for
a class S∗ of solutions to fully nonlinear uniformly elliptic equations; see Definition 2.8. Along the lines of the Euclidean
Calderón–Zygmund theory, we are interested in a potential theory for nondivergent elliptic operators on Riemannianmani-
folds, and its relation to the Harnack inequality with a certain curvature bound of the underlying manifolds, which we hope
to consider in subsequent works. Lastly, we end the introduction by stating our result as follows.

Theorem 1.1 (W 2,ε-Estimate). Let M be a complete Riemannian manifold with the sectional curvature bounded from below by
−κ for κ ≥ 0. Let 0 < R ≤ R0 and x0 ∈ M and f ∈ Lnη (B2R(x0)) for η := 1 + log2 cosh(4

√
κR0). There exist uniform constant

ε > 0 and C > 0 such that if a smooth function u belongs to S∗ (λ,Λ, f ) in B2R(x0), then we have that u ∈ W 2,ε (BR(x0)) with
the estimate?

BR(x0)
|u|ε + |R∇u|ε +

R2D2u
ε 1

ε

≤ C


∥u∥L∞(B2R(x0)) +

?
B2R(x0)

|R2f |nη
 1

nη

,

where ε > 0 and C > 0 depend only on n, λ,Λ, and
√
κR0, and we denote

>
Q f :=

1
Vol(Q )


Q f dVol.

Here, theW 2,ϵ-estimate is scale-invariant in the sense that the constants ϵ, C > 0 and η ≥ 1 depend only on dimension,
the ellipticity constants and a scale-invariant curvature bound from below. We remark that Lnη is a natural Lebesgue space
for uniformly elliptic equations on Riemannian manifolds with a lower Ricci curvature bound due to Bishop–Gromov’s
Theorem 2.1; see Lemma 2.2. In particular, for the case when a Riemannian manifold has nonnegative sectional curvature,
i.e., κ = 0, theW 2,ε-estimate is global, and depends only on dimension n, and the ellipticity constants λ, andΛwith η = 1.

2. Preliminaries

Throughout this paper, let (M, g) be a smooth, complete Riemannianmanifold of dimension n, where g is the Riemannian
metric. A Riemannian metric defines a scalar product and a norm on each tangent space, i.e., ⟨X, Y ⟩x := gx(X, Y ) and
|X |

2
x := ⟨X, X⟩x for X, Y ∈ TxM , where TxM is the tangent space at x ∈ M . Let d(·, ·) be the Riemannian distance on M .

For a given point y ∈ M , dy(x) denotes the distance to x from y, i.e., dy(x) := d(x, y). A Riemannian manifold is equipped
with the Riemannian measure Vol = Volg onM which is denoted by | · | for simplicity.

For a smooth function u : M → R, the gradient ∇u of u is defined by

⟨∇u, X⟩ := du(X)

for any vector field X onM , where du : TM → R is the differential of u. The Hessian D2u of u is defined as

D2u (X, Y ) := ⟨∇X∇u, Y ⟩ ,

for any vector fields X, Y on M , where ∇ denotes the Riemannian connection of M . We observe that the Hessian D2u is a
symmetric 2-tensor overM , and D2u(X, Y ) at x ∈ M depends only on the values X, Y at x, and u in a small neighborhood of
x. By the metric, the Hessian of u at x is canonically identified with a symmetric endomorphism of TxM:

D2u(x) · X = ∇X∇u, ∀X ∈ TxM.

We will write D2u(x) (X, Y ) =

D2u(x) · X, Y


for X ∈ TxM . In terms of local coordinates


xi

of M , the components of D2u

are written by
D2u


ij =

∂2u
∂xi∂xj

− Γ k
ij
∂u
∂xk
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