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a b s t r a c t

In this paper, we prove a local in time unique existence theorem for the compressible
viscous fluids in the general domain with slip boundary condition. For the purpose, we use
the contraction mapping principle based on the maximal Lp–Lq regularity by means of the
Weis operator valued Fourier multiplier theorem for the corresponding time dependent
problem. To obtain the maximal Lp–Lq regularity, we prove the sectorial R-boundedness
of the solution operator to the generalized Stokes equations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the motion of a compressible barotropic viscous fluid occupying a domain Ω of the N dimensional
Euclidean space RN (N ≥ 2) with the boundary slip condition. Let ρ = ρ(x, t) be the density of the fluid, v = v(x, t) =

(v1(x, t), . . . , vN(x, t)) the velocity vector field, and P(ρ) the pressure function with x = (x1, . . . , xN) ∈ Ω and t being the
time variable. The motion is described by the following equations:

∂tρ + div (ρu) = 0 in Ω × (0, T ),
ρ(∂tu + u · ∇u) − Div S(u) + ∇P(ρ) = 0 in Ω × (0, T ),
D(u)n − ⟨D(u)n,n⟩n = 0,u · n = 0 on Γ × (0, T ),
(ρ,u)|t=0 = (ρ∗ + θ0,u0) in Ω

(1.1)

(cf. [1,2]), where ∂t = ∂/∂t , ρ∗ is a positive constant describing the mass density of the reference body Ω , Γ the boundary
of Ω and n the unit outward normal to Γ . Moreover, P(ρ) is a C∞ function defined on ρ > 0 satisfying the condition:
P ′(ρ) > 0 for ρ > 0 and S(u) the stress tensor of the form:

S(u) = αD(u) + (β − α)divuI,
where α and β are positive constants describing the first and second viscosity coefficients, respectively, D(v) denotes the
deformation tensor whose (j, k) components are Djk(v) = ∂jvk + ∂kvj with ∂j = ∂/∂xj, and I the N × N identity matrix.
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Finally, for any matrix field K with components Kjk, j, k = 1, . . . ,N , the quantity Div K is an N-vector with jth componentN
k=1 ∂kKjk, and also for any vector of functions u = (u1, . . . , uN) we set divu =

N
j=1 and u · ∇ =

N
j=1 uj∂j with

∇ = (∂1, . . . , ∂N).
A local in time unique existence theorem was proved by Burnat and Zaja̧czkowski [3] in a bounded domain of

3-dimensional Euclidean space R3, where their velocity field u and density of the fluid ρ belong to Sobolev–Slobodeckij
spaces W 2+α,1+α/2

2 and W 1+α,1/2+α/2
2 with α ∈ (1/2, 1), respectively. Moreover, a global in time unique existence theorem

was proved by Kobayashi and Zaja̧czkowski [4] in the same class as in the local in time unique existence theorem by the
energy method. The purpose of this paper is to prove a local in time unique existence theorem in a uniform W 3−1/q

q
1 and

our velocity field u and density of the fluid ρ belong to W 2,1
q,p (Ω × (0, T )) and W 1,1

q,p (Ω × (0, T )) with 2 < p < ∞ and
N < q < ∞, where we have set

W ℓ,m
q,p (Ω × (0, T )) = Lp((0, T ),W ℓ

q (Ω)) ∩ Wm
p ((0, T ), Lq(Ω)). (1.2)

One of the merits of our approach is less compatibility condition than [3].
To obtain such a local in time unique existence theorem, it is key to prove the Lp–Lq maximal regularity for the linearized

problem of the following form:
∂tρ + γ2divu = f in Ω × (0, ∞),
γ0∂tu − Div S(u) + ∇(γ1ρ) = g in Ω × (0, ∞),
α[D(u)u − ⟨D(u)n,n⟩n] = h − ⟨h,n⟩n, u · n = h̃ on Γ × (0, ∞),
(ρ,u)|t=0 = (ρ0,u0) in Ω .

(1.3)

γi = γi(x) (i = 0, 1, 2) are uniformly continuous functions defined on Ω̄ satisfying the assumptions:

ρ∗/2 ≤ γ0(x) ≤ 2ρ∗, 0 ≤ γk(x) ≤ ρ1 (x ∈ Ω, k = 1, 2), ∥∇γℓ∥Lr (Ω) ≤ ρ1 (ℓ = 0, 1, 2) (1.4)

with some positive constant ρ1.
The maximal regularity result was first proved by Solonnikov [5] for the general parabolic equations satisfying the

uniform Lopatinski–Shapiro conditions. In his paper, the problem in a domain is transformed locally to the model problems
in a neighbourhood of either an interior point or a boundary point by using the localization technique and the partition
of unity associated with the domain Ω . The boundary neighbourhood problem (1.3) is transformed to a problem in the
half-space xN > 0. By applying the Fourier transformwith respect to time and tangential directions, his problem becomes a
system of ordinary differential equations. Solonnikov calculated explicitly the inverse Fourier transform of solutions of such
ordinary differential equations and expressed them in the form of potentials in the half-space. Then, he estimated them in
suitable norms. Burnat and Zaja̧czkowski [3] also used the same procedure as in Solonnikov [5] to transform problem (1.3) to
the half-space problem and they estimated the inverse Fourier transform of solutions of the ordinary differential equations
by the Plancherel theorem because they worked in the L2 framework. Kakizawa [6] proved R-boundedness of solutions to
the ordinary differential equations corresponding to (1.3) and used theWeis operator valued Fourier multiplier theorem [7]
to prove the maximal Lp–Lq regularity in the half-space. The idea in [6] is similar to that in Shibata and Shimizu [8].

Our approach is completely different from these papers [5,3,6], that is we prove the existence of an R bounded solution
operator to the following generalized resolvent problem corresponding to time dependent problem (1.3):λθ + γ2div v = f in Ω ,

γ0λv − Div S(v) + ∇(γ1θ) = g in Ω ,
α[D(v)n − ⟨D(v)n,n⟩n] = h − ⟨h,n⟩n, v · n = h̃ on Γ .

(1.5)

In fact, we prove that for any ϵ ∈ (0, π/2), there exist a constant λ0 ≥ 1 and an operator family R(λ) ∈ Hol (Σϵ,λ0 ,

L(Xq(Ω),W 2
q (Ω)N)) such that for any f ∈ W 1

q (Ω), g ∈ Lq(Ω)N , h ∈ W 1
q (Ω)N and h̃ ∈ W 2

q (Ω), problem (1.5)
admits a unique solution (ρ, v) = R(λ)(f, g, λ1/2h, ∇h, λh̃, λ1/2

∇h̃, ∇2h̃) and (λ, λ1/2
∇Pv, ∇

2Pv)R(λ) is R-bounded for
λ ∈ Σϵ,λ0∩Kϵ with value inL(Xq(Ω),W 1

q (Ω)×Lq(Ω)Ñ). Here, Pv is the projection such that Pv(ρ,u) = u, Ñ = N+N2
+N3,

Σϵ,λ0 = {λ ∈ C | |λ| ≥ λ0, | arg λ| ≤ π − ϵ},

Kϵ =


λ ∈ C |


λ +

γ

α + β
+ ϵ

2

+ (Im λ)2 ≥


γ

α + β
+ ϵ

2


, (1.6)

Xq(Ω) = {F = (F1, . . . , F7) | F1 ∈ W 1
q (Ω), F5 ∈ Lq(Ω), F2, F3, F6 ∈ Lq(Ω)N , F4, F7 ∈ Lq(Ω)N

2
},

with γ = supx∈Ω γ1(x)γ2(x), and F1, F2, F3, F4, F5, F6 and F7 are independent variables corresponding to f , g, λ1/2h∇h,
λh̃, λ1/2

∇h̃ and ∇
2h̃, respectively. Moreover, Hol (U, L(X, Y )) denotes the set of all L(X, Y ) valued holomorphic functions

1 The definition of W 3−1/q
q domain is given in Definition 1.1, below.
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