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1. Introduction

We consider the motion of a compressible barotropic viscous fluid occupying a domain £2 of the N dimensional
Euclidean space RN (N > 2) with the boundary slip condition. Let p = p(x, t) be the density of the fluid, v = v(x, t) =

(v1(x, t), ..., vN(x, t)) the velocity vector field, and P(p) the pressure function with x = (x1, ..., xy) € §2 and t being the
time variable. The motion is described by the following equations:
orp +div(pu) =0 in 2 x (0, T),
p(Ou+u-Vu) —DivS(u) + VP(p) =0 in2 x (0,T), (1.1)
D(wn— (D(wn,n)n=0,u-n=0 onl" x (0,7), ’
(0, Wli=o = (px + 6o, o) in £2

(cf.[1,2]), where d; = 9/0dt, p, is a positive constant describing the mass density of the reference body 2, I" the boundary
of £2 and n the unit outward normal to I". Moreover, P(p) is a C* function defined on p > 0 satisfying the condition:
P'(p) > 0for p > 0 and S(u) the stress tensor of the form:

S(u) = oD(u) 4 (B — a)divul,

where « and S are positive constants describing the first and second viscosity coefficients, respectively, D(v) denotes the
deformation tensor whose (j, k) components are D (v) = 9jvx + dxv; with 9; = 9/0x;, and I the N x N identity matrix.
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Finally, for any matrix field K with components Ky, j, k = 1, ..., N, the quantity DivK is an N-vector with jth component
Zgzl 3Kk, and also for any vector of functions u = (uy, ..., uy) we set divu = Z]N:] andu-V = Z}V:l u;9; with
V =(01,...,0n).

A local in time unique existence theorem was proved by Burnat and Zajaczkowski [3] in a bounded domain of
3-dimensional Euclidean space R3, where their velocity field u and density of the fluid o belong to Sobolev-Slobodeckij
spaces W—L,HO"HO‘/2 and WZHO”I/HD’/2 with @ € (1/2, 1), respectively. Moreover, a global in time unique existence theorem
was proved by Kobayashi and Zajaczkowski [4] in the same class as in the local in time unique existence theorem by the
energy method. The purpose of this paper is to prove a local in time unique existence theorem in a uniform W;_l/‘“ and
our velocity field u and density of the fluid p belong to W21 (2 x (0,T)) and W, (£2 x (0,T)) with2 < p < oc and
N < q < 0o, where we have set

Wy (82 x (0,T)) = Ly((0, T), Wy (£2)) N W' ((0, T), Lo (£2)). (1.2)
One of the merits of our approach is less compatibility condition than [3].

To obtain such a local in time unique existence theorem, it is key to prove the L,~L, maximal regularity for the linearized

problem of the following form:

orp + yodiva = f in £2 x (0, 00),

o0 — DivS(u) + V(y1p) = g ~ in 2 x (0, 00), (1.3)
o[D(w)u — (D(w)n,n)n] =h— (h,n)n, u-n=h onI x (0,0), ’
(P, W=o = (0o, Uo) in £2.

¥i = %:(®) (i = 0, 1, 2) are uniformly continuous functions defined on £2 satisfying the assumptions:

P/2 < Yo(¥) < 2ps, 0=y <p xeR,k=1,2), IVyell, ) <1 €=0,1,2) (1.4)

with some positive constant p;.

The maximal regularity result was first proved by Solonnikov [5] for the general parabolic equations satisfying the
uniform Lopatinski-Shapiro conditions. In his paper, the problem in a domain is transformed locally to the model problems
in a neighbourhood of either an interior point or a boundary point by using the localization technique and the partition
of unity associated with the domain £2. The boundary neighbourhood problem (1.3) is transformed to a problem in the
half-space xy > 0. By applying the Fourier transform with respect to time and tangential directions, his problem becomes a
system of ordinary differential equations. Solonnikov calculated explicitly the inverse Fourier transform of solutions of such
ordinary differential equations and expressed them in the form of potentials in the half-space. Then, he estimated them in
suitable norms. Burnat and Zajaczkowski [3] also used the same procedure as in Solonnikov [5] to transform problem (1.3) to
the half-space problem and they estimated the inverse Fourier transform of solutions of the ordinary differential equations
by the Plancherel theorem because they worked in the L, framework. Kakizawa [6] proved R-boundedness of solutions to
the ordinary differential equations corresponding to (1.3) and used the Weis operator valued Fourier multiplier theorem [7]
to prove the maximal L,-L, regularity in the half-space. The idea in [6] is similar to that in Shibata and Shimizu [8].

Our approach is completely different from these papers [5,3,6], that is we prove the existence of an R bounded solution
operator to the following generalized resolvent problem corresponding to time dependent problem (1.3):

A0 + ppdive = f in £2,
oAV — DivS(V) + V(y10) = g 5 in £2, (1.5)
o[Dv)n — (D(vin,n)n] =h— (h,n)n, v-n=h onT.

In fact, we prove that for any € € (0, w/2), there exist a constant Ag > 1 and an operator family R(A) € Hol (X ,,,
L(Xq(£2), W ($2)V)) such that for any f € W, (2), 8 € L)V, h € W, ()" and h e W, (£2), problem (1.5)
admits a unique solution (p,v) = R(A)(f, g A/2h, Vh, Ah, A1/2Vh, V2h) and (A, A1/2VP,, V2P,)R(}) is R-bounded for
A € ZeoNKe withvalue in £(X6(£2), W, (£2) xLy(£2)V). Here, P, is the projection such that P, (p, u) = u,N = N+N2+N3,

Ee.lo = {)" eC | |)"| = )"05 |arg)"| =r _6}3

2 2
_ 4 2 14
1<€_{Ae«:|<x+a+ﬁ+e> + (ImX) z<7a+ﬂ+e) } (1.6)

2
Xq(2) ={F = (F1,.... F;) | Fy € W) (), Fs € Lg(2), F5, F3, Fs € Ly(2)", F4, F; € Ly()"'},

with y = sup,.z ¥1(X)y2(x), and Fy, F,, F3, F4, Fs, Fg and F; are independent variables corresponding to f, g, A2hVh,
Ah, A2V h and V2h, respectively. Moreover, Hol (U, .£(X, Y)) denotes the set of all .£(X, Y) valued holomorphic functions

1 The definition of Wq371/q domain is given in Definition 1.1, below.
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