
Nonlinear Analysis 109 (2014) 23–32

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Instability of plane shear flows
Jiangang Qi, Shaozhu Chen, Bing Xie ∗

Department of Mathematics, Shandong University, Weihai, Weihai 264209, PR China

a r t i c l e i n f o

Article history:
Received 10 January 2014
Accepted 30 June 2014
Communicated by Enzo Mitidieri

MSC:
76E20
34B24
34L15

Keywords:
Rayleigh equation
Instability
Shear flow
Sturm–Liouville problem

a b s t r a c t

This paper obtains the existence of unstablemodes of the Rayleigh equationwith smooth or
piecewise smooth steady states. In the reasoning, we employ a crucial tool that displays the
asymptotic distribution of eigenvalues of non-symmetric Sturm–Liouville operators. For
flowswith piecewise smooth velocity profiles, we propose a new framework for eigenvalue
problems with interior singularities. Examples are presented to show the scope of our
criteria.
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1. Introduction

In this paper, we consider the hydrodynamic instability problem for plane shear flows. The purpose is to get sufficient
conditions for linear instability. For plane shear flows, this problem has a long history going back to scientists such as Lord
Rayleigh and Lord Kelvin in the nineteenth century. Consider a parallel plane shear flowU = iU(y) in the x-direction within
the channel x ∈ (−∞,∞) and y ∈ [−1, 1]. The linearized vorticity equation for a two-dimensional disturbance [1–3] is

∂tω + U(y)∂xw − U ′′(y)∂xψ = 0, (1.1)

where ω = ω(x, y, t) is the vorticity perturbation, ψ = ψ(x, y, t) is the stream function associated to ω by

ω = ∇
2ψ =

∂2

∂x2
ψ +

∂2

∂y2
ψ,

subject to the boundary condition ψ(±1, t) = 0.
By the normal mode method, seeking solutions in the form

ψ(x, y, t) = ϕ(y)eiα(x−ct)

with α the wave number (positive real) in the x-direction and c = cr + ici the complex wave speed, we obtain the Rayleigh
equation

(U(y)− c)

ϕ′′

− α2ϕ

− U ′′(y)ϕ = 0, y ∈ [−1, 1] (1.2)
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with the boundary condition

ϕ(−1) = 0, ϕ(1) = 0. (1.3)

Then the instability problem for shear flows is reduced to the Rayleigh eigenvalue problem, that is, the flow is linearly
unstable if there exists a nontrivial solution to (1.2) and (1.3) with ci > 0. A classical result of Lord Rayleigh [3] is the
necessary condition for instability that the basic velocity profile have an inflection point y = ys, i.e., U ′′(ys) = 0. This
condition was later improved by Fjørtoft [4].

In 1935, Tollmien [5] obtained an unstable solution to (3) by formally perturbing around a neutral mode (c real) for
symmetric flows. M.N. Rosenbluth and A. Simon [6] obtained a necessary and sufficient condition for instability of a class
of monotone flows. Recently, some instability criteria have been obtained for the special flows U(y) = sinmy in [7] and
U(y) = cosmy in [8]. These results were extensively improved and extended by Z. Lin to more general odd symmetric flows
in [9] and other classes of shear flows in [10].

Proposition 1.1. [cf. [9, Theorem 1.4]] Assume that U ∈ C2
[−1, 1] is odd and K(y) := U ′′(y)/U(y) is bounded. Let H0 be the

operator generated by −d2/dy2 + U ′′(y)/U(y) with the boundary condition (1.3). If H0 has a negative eigenvalue, then there is
a non-trivial solution to the Rayleigh equation (1.2) with c = iλ0 (here λ0 > 0), for a wave number in some areas. Specifically,
if λ1, λ2, . . . , λN are all the negative eigenvalues of H0, λ1 < λ2 < · · · < λN < 0, αj =


−λj, j = 1, . . . ,N, then there is a

purely growing instability for every wave number α belonging to the set

(αN , αN−1) ∪ · · · ∪ (α2k, α2k−1) ∪ · · · ∪ (α2, α1) for even N,

or to the set

(αN−1, αN−2) ∪ · · · ∪ (α2k, α2k−1) ∪ · · · ∪ (α2, α1) for odd N.

In the first result of this paper, we allow the function K(y) in a wider class L1[−1, 1] and, in particular, K(y) may be
unbounded.

Theorem 1.2. Suppose that U(y) is odd symmetric on (−1, 1), U ∈ C2
[−1, 1] and K = U ′′/U ∈ L1[−1, 1]. If −d2/dy2 +K(y)

with the boundary condition (1.3) has negative eigenvalues

λ1 < λ2 < · · · < λN < 0,

then there is an unstable mode for every wave number α ∈
m0

k=1(α2k, α2k−1), where m0 = [(N + 1)/2], the largest integer less
than or equal to (N + 1)/2, αj =


−λj for 1 ≤ j ≤ N and αN+1 = 0.

Remark 1. Note that we add an interval (0, αN) to the set for α when N is odd to patch up a flaw in Proposition 1.1.

In the next two results wewill further loosen the restriction on the functionU(y), i.e., wewill use the following piecewise
smoothness assumption under which U ′′(y)may be unbounded, and hence, K(y)may not be locally integrable.

U(y) is odd, U ∈ C[−1, 1] and there exist 2N + 1 points {yj}N−N in [−1, 1] such that 0 = y0 < y1 < · · · <

yN = 1, y−j = −yj and U(y) is twice continuously differentiable for y ≠ yj, − N ≤ j ≤ N . (1.4)

Theorem 1.3. If U(y) satisfies (1.4) and there exists c ∈ C with Imc > 0 such that 1

−1

dy
(U(y)− c)2

= 0, (1.5)

then there exists an αc > 0 such that the Rayleigh eigenvalue problem of (1.2) with (1.3) has an unstable mode for every
α ∈ (0, αc).

Theorem 1.4. Suppose that (1.4) holds. If there exist constants Cj > 0 and 0 ≤ ρj < 1, 0 ≤ j ≤ N, such that

|U(y)| ≥ Cj|y − yj|ρj for y near yj, (1.6)

then there exists anαc > 0 such that the Rayleigh problem of (1.2)with (1.3) has at least one unstablemode for everyα ∈ (0, αc).

Section 3 will give a proof of Theorem 1.2, in which we are inspired by [9] but employ a different method, namely, by
means of the asymptotic properties of eigenvalues of non-symmetric Sturm–Liouville operators to weaken the smoothness
condition on K(y). Theorems 1.3 and 1.4 deal with the Rayleigh equation with piecewise smooth velocity profiles whose
derivatives may be discontinuous at junctions. An immediate consequence is that K(y) may not be locally integrable and
hence the Rayleigh eigenvalue problem may be singular at some interior points. A special case with a piecewise linear
velocity profile was studied in [1, p. 299], but there are no general results. We will propose a framework for eigenvalue
problemswith interior singularities and prove Theorems 1.3 and 1.4 in Section 4.Wewill show several illustrative examples
among which the last will serve as a comparison to the result in [1, p. 299].
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