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a b s t r a c t

In this paperwe study aHénon-like equation (see Eq. (1)), where the nonlinearity f (t) is not
homogeneous (i.e., it is not a power). By minimization on the Nehari manifold, we prove
that for large values of the parameter α there is a breaking of symmetry and non radial
solutions appear. This holds for sub- and super-critical growth of the nonlinearity f .

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study the following Hénon-like equation
−∆u = |x|α f (u) inΩ
u = 0 on ∂Ω (1)

where Ω is the unity ball of Rn and n ≥ 4. From a well known result of Ni [1] it derives, assuming suitable hypotheses on
f , that (1) has a radial solution. In the case in which f (t) is a power, say f (t) = |t|p−2t , the problem is known as Hénon’s
equation (see [2]). A seminal paper of Smets, Su andWillem [3] showed that, for largeα’s, there is a breaking of symmetry and
a new, non radial, solution appears. After that, much work has been made to study these non radial solutions: multiplicity,
shape, and asymptotic behavior. To have just an idea of the research on this topic, one can see for example [4–6] for results
about the critical and supercritical cases, [7,8] for the study of the asymptotic behavior of the maximum point and the
existence of multi-peak solutions, [9] for the uniqueness of the radial solution for 2 < p < 2n+2α

n−2 , [10,11] for results about
the p-Laplacian, and [12] for the study of Hénon type system. See also the references in the quoted papers.

At the best of our knowledge, all papers on non radial solutions of the Hénon equation deal with the case in which the
nonlinearity is a power.

In this paper we prove a result of existence of a non radial solution, for large α’s, in the case in which f is not a power
(but not too different from a power). Borrowing some ideas and some results from [6], we also prove existence of non radial
solutions for a range of growth of f including supercritical growth. We will find the solutions as minima on the Nehari
manifold of the functional usually associated to (1). So the main points of the present paper can be summarized as follows:
non homogeneous nonlinearity, supercritical growth, and Nehari manifold.
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To write down our result, we first define l = n/2 and p∗(n) = 2 n+2
n−2 if n is even, l = [n/2] + 1 and p∗(n) = 2 [n/2]+2

[n/2] if n
is odd.

We show that such problem admits a radial solution and a non radial solution under the following hypotheses on f :

(f1) f is a Hölder continuous function (locally), f (z) ≥ 0 ∀z > 0, f (z) = o(z) for z → 0; moreover limz→+∞
f (z)
z = +∞,

f (z) = 0 for all z ≤ 0;
(f2) |f (z)| ≤ C(1 + |z|)p−1, where 2 < p < p∗(n) for all z;
(f3) there exists q > 2 such that qF(t) ≤ tf (t) for all t ∈ R, where F(t) =

 t
0 f (s)ds.

(f4) there exist µ1, µ2 > 2 such that for all t ∈ [0, 1] and v ≥ 0 we have f (tv) ≥ tµ1−1f (v) and for all t ≥ 1 and v ≥ 0 we
have f (tv) ≥ tµ2−1g(v)where g(·) is a non negative continuous function on R such that g(0) = 0 and with

4
µ1 − µ2

(µ1 − 2)(µ2 − 2)
< n − l. (2)

Remarks. Some examples of function that satisfy the hypothesis are f (t) = tp−1
+ tq−1 with p < q and µ1 = µ2 = q,

f (t) =
tq

1+tq−p or f (t) = min{tp−1, tq−1
} with p = µ1 and q = µ2 that satisfy (2).

To state our results we introduce the usual Sobolev space H1
0 (Ω) and its subspace H1

0,rad(Ω) of radial functions, that is

H1
0,rad(Ω) =


u ∈ H1

0 (Ω)\{0} : u(x) = u(|x|)

.

We then introduce the usual functional associated to problem (1), that is

Iα(u) =
1
2


Ω

|∇u|2dx −


Ω

|x|αF(u) dx,

and the Nehari manifolds of the functional on H1
0,rad(Ω):

Nα,r =


u ∈ H1

0,rad(Ω)\{0} :


Ω

|∇u|2dx =


Ω

|x|α f (u)u dx

.

From the results of [1] it easily follows that Iα is a well defined C1 functional on H1
0,rad(Ω), for large α’s, that is for

2n+2α
n−2 ≥ p∗(n). Also the following theorem is a particular consequence, suitable for our purposes, of the results of [1].

Theorem 1. Under the hypotheses (f1), (f2), (f3), (f4), for 2n+2α
n−2 ≥ p∗(n), there is u ∈ H1

0,rad(Ω)\{0}, non-negative solution
of (1), that realizes the minimum on the Nehari manifold Nα,r that is:

Iα(uα) = mα,r = min
v∈Nα,r

Iα(v).

In this work we prove the following theorem.

Theorem 2. Under the hypotheses (f1), (f2), (f3) and (f4) the problem (1) admits a non radial solution (which is also non negative)
for large α’s.

For future use let us notice that from hypothesis (f4) it follows that

∀t ∈ (0, 1), v > 0 results F(tv) ≥ tµ1F(v)
∀t > 1, v > 0 results F(tv) ≥ tµ2G(v)

with G(v) :=
 v
0 g(t)dt .

The rest of this paper is devoted to the proof of Theorem 2. As usual in the study of Hénon equation, to get the proof we
first estimate the ‘‘radial critical level’’ mα,r , then we estimate other critical levels and we show that, for large α’s, they are
distinct.

2. Estimate of mα,r

We have defined

mα,r = inf
u∈Nα,r

Iα(u).

Thanks to Theorem 1mα,r is attained, i.e. is a minimum. In this section we get an estimate from below formα,r .
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