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a b s t r a c t

In the paper, we consider two types of scalarization functions of sets and investigate their
properties. Moreover, based on two set-relations, we propose two kinds of minimax and
maximin values of set-valued maps, respectively, and show some minimax theorems of
set-valuedmapswith respect to thoseminimax andmaximin values by using several prop-
erties of the above two functions. As an application of these results, we give common saddle
point theorems of vector-valued functions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Minimax theorems including saddle point problems of real-valued or vector-valued functions have been investigated by
many researchers. Especially, Tanaka [1–3] shows some vector-valued minimax theorems by using scalarization methods
of vectors in the objective space. In recent years, some researchers consider a concept of minimax and maximin values of
set-valuedmaps, which is based on a vector criterion, and show some types ofminimax theorems for set-valuedmaps [4–9].
Also, to show their results they use scalarization methods of vectors in the objective space.

On the other hand, many researchers have investigated scalarization as one of the important tools in vector optimization
(see [10–12] and references therein). In particular, a sublinear scalarization function of vectors introduced by Rubinov [13]
has many useful properties to study nonconvex vector optimization for the weak case (see [11,14] and references therein).
Also, some researchers consider certain generalizations of this function and apply them to several problems in set-valued
optimization [15–17]. In [18], Hamel and Löhne propose several scalarization functions of sets, which are based on two types
of set-relations introduced in [19]. By using these functions, they show generalized results on Ekeland variational principle
in an abstract space like topological vector space without such strong assumption as convexity. In [20–23], properties and
applications of Hamel and Löhne type scalarization functions are investigated in set-valued optimization. Furthermore,
based on the approach of Hamel and Löhne, and six kinds of set-relations introduced in [19], we propose twelve types
of scalarization functions of sets in [24]. These functions include all of scalarization functions above, and so we call them
unified types of scalarization functions of sets.

∗ Tel.: +81 45 481 3732.
E-mail address: kuwano@kanagawa-u.ac.jp.

http://dx.doi.org/10.1016/j.na.2014.06.011
0362-546X/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.na.2014.06.011
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2014.06.011&domain=pdf
mailto:kuwano@kanagawa-u.ac.jp
http://dx.doi.org/10.1016/j.na.2014.06.011


86 I. Kuwano / Nonlinear Analysis 109 (2014) 85–102

In the paper, we consider set-valuedminimax theorems including vector-valuedminimax theoremswith a set-criterion.
The motivation of this research is as follows. In general, minimax and maximin values of the vector-valued function f on
X × Y are defined as follows:

min

y∈Y

max f (x, y) and max

x∈X

min f (x, y).

However, are they really minimax and maximin values of f ? F(x) := max f (x, y) and G(y) := min f (x, y) are generally
set-valued maps. Therefore, we think it is more suitable that ‘‘min’’ of minmax f and ‘‘max’’ of maxmin f are defined by a
set criterion.

The aim of the paper is to investigate vector-valued set-valued minimax theorems, which are based on two set-relations
introduced in [19], and their applications. For this end, we consider two types of scalarization functions of sets, which are
special cases of Hamel and Löhne type functions, and investigate several properties of them.

The organization of the paper is as follows. In Section 2, we introduce some basic concepts in set-valued optimization.
In Section 3, we introduce two types of scalarization functions of sets, and investigate their properties. Moreover, we give
sufficient conditions for the existence of solutions for certain set-valued optimization problems. In Section 4, we define two
types of minimax and maximin values of set-valued maps, respectively, and show some minimax theorems with respect to
those values. In Section 5, we consider parametric vectorminimax problems and investigate common saddle point theorems
of vector-valued functions as an application of set-valued minimax theorems in Section 4.

2. Basic concepts in set-valued optimization

Firstly, we give the preliminary terminology and notation, which will be used in the paper. Let (Z, ∥ · ∥) be the real
normed space (Z for short) and A, B ⊂ Z with A ≠ ∅ and B ≠ ∅. We denote the origin of Z by θZ ; the family of all nonempty
subsets of Z by ℘(Z); the topological interior and complement of A by int A and Ac , respectively; the product of α ∈ R
and A by αA := {αa|a ∈ A}; the algebraic sum, algebraic difference of A and B by A + B := {a + b|a ∈ A, b ∈ B},
A− B := {a− b|a ∈ A, b ∈ B}, respectively; the convex hull of A by conv A. Moreover, we denote the set of all non-negative
real numbers by R+; the set of all extended real numbers by R̄, that is, R̄ := R ∪ {±∞}. Furthermore, we denote the
algebraic sum and algebraic difference of a set A and a family of nonempty sets B by A + B := {A + B : B ∈ B} and
A − B := {A − B : B ∈ B}, respectively.

Throughout the paper, X and Y are real Hausdorff topological vector spaces, Z is the real normed space, C is a nontrivial,
closed, pointed and convex cone in Z (that is, C ≠ {θZ }, C ≠ Z , C + C = C , C ∩ C = {θZ } and λC ⊂ C for all λ ≥ 0) with
int C ≠ ∅. We define a partial ordering ≤C as follows:

x≤C y if y − x ∈ C for x, y ∈ Z .

When x≤C y for x, y ∈ Z , we define the order interval between x and y by

[x, y]C := {z ∈ Z |x≤C z and z ≤C y}.

If k ∈ int C , then int [−k, k]C = [−k, k]int C . When x, y ∈ R and C := R+, [x, y]C (resp., int [x, y]C ) is denoted by [x, y] (resp.,
]x, y[).

Let A ∈ ℘(Z). Then a0 ∈ A is said to be minimal element of A iff

({a0} − C) ∩ A = {a0};

maximal element of A iff

({a0} + C) ∩ A = {a0}.

If C is replaced by int C , then it is called weak minimal element (resp., weak maximal element) of A. We denote the set of all
minimal (resp., weak minimal, maximal, weak maximal) elements of A by minv A (resp., minv

w A, maxv A, maxvw A).
Now we consider two types of set-relation. Let A1, A2 ∈ ℘(Z). Then we write

A1 ≤
(l)
C A2 by A2 ⊂ A1 + C .

A1 ≤
(u)
C A2 by A1 ⊂ A2 − C .

Based on these set-relations, Kuroiwa [25] proposes the following minimal and maximal element concepts of a family of
sets. Let A ⊆ ℘(Z). Then A0 ∈ A is said to be type (∗) minimal element of A iff for any A ∈ A,

A≤
(∗)
C A0 implies A0 ≤

(∗)
C A,

and type (∗) maximal element of A iff for any A ∈ A,

A0 ≤
(∗)
C A implies A≤

(∗)
C A0,

where ∗ = l, u. We denote the family of all type (∗) minimal elements (resp., maximal elements) of A by Min∗A (resp.,
Max∗A). Also, we denote the family of all type (∗) weak minimal elements (resp., weak maximal element) of A by Min∗

wA
(resp., Max∗

wA) where ∗ = l, u.
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