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a b s t r a c t

Using the Hodge decomposition on bounded domains the compressible Euler equations
of gas dynamics are reformulated using a density weighted vorticity and dilatation as pri-
mary variables, together with the entropy and density. This formulation is an extension
to compressible flows of the well-known vorticity–stream function formulation of the in-
compressible Euler equations. TheHamiltonian and associated Poisson bracket for this new
formulation of the compressible Euler equations are derived and extensive use is made of
differential forms to highlight themathematical structure of the equations. In order to deal
with domains with boundaries also the Stokes–Dirac structure and the port-Hamiltonian
formulation of the Euler equations in density weighted vorticity and dilatation variables
are obtained.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of an inviscid compressible gas is described by the compressible Euler equations and an equation of state.
The compressible Euler equations have been extensively used to model many different types of compressible flows, since
in many applications the effects of viscosity are small or can be neglected. This has motivated over the years extensive
theoretical and numerical studies of the compressible Euler equations. The Euler equations for a compressible, inviscid and
non-isentropic gas in a domain Ω ⊆ R3 are defined as

ρt = −∇ · (ρu), (1)

ut = −u · ∇u−
1
ρ
∇p, (2)

st = −u · ∇s, (3)
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with u = u(x, t) ∈ R3 the fluid velocity, ρ = ρ(x, t) ∈ R+ the mass density and s(x, t) ∈ R the entropy of the fluid, which
is conserved along streamlines. The spatial coordinates are x ∈ Ω and time t and the subscript means differentiation with
respect to time. The pressure p(x, t) is given by an equation of state

p = ρ2 ∂U
∂ρ

(ρ, s), (4)

where U(ρ, s) is the internal energy function that depends on the density ρ and the entropy s of the fluid. The compressible
Euler equations have a rich mathematical structure [1] and can be represented as an infinite dimensional Hamiltonian
system [2,3]. Depending on the field of interest, various types of variables have been used to define the Euler equations,
e.g. conservative, primitive and entropy variables [1]. The conservative variable formulation is for instance a good starting
point for numerical discretizations that can capture flow discontinuities [4], such as shocks and contact waves, whereas the
primitive and entropy variables are frequently used in theoretical studies.

In many flows vorticity is, however, the primary variable of interest. Historically, the Kelvin circulation theorem and
Helmholtz theorems on vortex filaments have played an important role in describing incompressible flows, in particular
the importance of vortical structures. This has motivated the use of vorticity as primary variable in theoretical studies of
incompressible flows, see e.g. [5,2], and the development of vortex methods to compute incompressible vortex dominated
flows [6].

The use of vorticity as primary variable is, however, not very common for compressible flows. This is partly due to the
fact that the equations describing the evolution of vorticity in a compressible flow are considerably more complicated than
those for incompressible flows. Nevertheless, vorticity is also very important in many compressible flows. A better insight
into the role of vorticity, and also dilatation to account for compressibility effects, is not only of theoretical importance, but
also relevant for the development of numerical discretizations that can compute these quantities with high accuracy.

In this articlewewill present a vorticity–dilatation formulation of the compressible Euler equations. Special attentionwill
be given to the Hamiltonian formulation of the compressible Euler equations in terms of the density weighted vorticity and
dilatation variables on domains with boundaries. This formulation is an extension to compressible flows of the well-known
vorticity–stream function formulation of the incompressible Euler equations [5,2]. An important theoretical tool in this
analysis is the Hodge decomposition on bounded domains [7]. Since bounded domains are crucial in many applications
we also consider the Stokes–Dirac structure of the compressible Euler equations. This results in a port-Hamiltonian
formulation [8] of the compressible Euler equations in terms of the vorticity–dilatation variables, which clearly identifies the
flows and efforts entering and leaving the domain. An important feature of our presentation is that we extensively use the
language of differential forms. Apart from being a natural way to describe the underlying mathematical structure it is also
important for our long term objective, viz. the derivation of finite element discretizations that preserve the mathematical
structure as much as possible. A nice way to achieve this is by using discrete differential forms and exterior calculus, as
highlighted in [9–11].

The outline of this article is as follows. In the introductory Section 2 we summarize the main techniques that we will
use in our analysis. A crucial element is the use of the Hodge decomposition on bounded domains, which we briefly discuss
in Section 2.2. This analysis is based on the concept of Hilbert complexes, which we summarize in Section 2.1. The Hodge
Laplacian problem is discussed in Section 2.3. Here we show how to deal with inhomogeneous boundary conditions, which
is of great importance for our applications. These results will be used in Section 3 to define via the Hodge decomposition
a new set of variables, viz., the density weighted vorticity and dilatation, and to formulate the Euler equations in terms of
these new variables. Section 4 deals with the Hamiltonian formulation of the Euler equations using the density weighted
vorticity and dilatation, together with the density and entropy, as primary variables. The Poisson bracket for the Euler
equations in these variables is derived in Section 5. In order to account for bounded domains we extend the results obtained
for the Hamiltonian formulation in Sections 4 and 5 to the port-Hamiltonian framework in Section 6. First, we extend in
Section 6.1 the Stokes–Dirac structure for the isentropic compressible Euler equations presented in [12] to thenon-isentropic
Euler equations. Next, we derive the Stokes–Dirac structure for the compressible Euler equations in the vorticity–dilatation
formulation in Section 6.3 and use this in Section 6.5 to obtain a port-Hamiltonian formulation of the compressible Euler
equations in vorticity–dilatation variables. Finally, in Section 7 we finish with some conclusions.

2. Preliminaries

This preliminary section is devoted to summarize the main concepts and techniques that we use throughout this paper
in our analysis.

2.1. Review of Hilbert complexes

In this section we discuss the abstract framework of Hilbert complexes, which is the basis of the exterior calculus in
Arnold, Falk andWinther [10] and to which we refer for a detailed presentation. We also refer to Brüning and Lesch [13] for
a functional analytic treatment of Hilbert complexes.
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