

Contents lists available at SciVerse ScienceDirect

Toxicon

journal homepage: www.elsevier.com/locate/toxicon

ADP-ribosylation of guanosine by SCO5461 protein secreted from Streptomyces coelicolor

Tsuyoshi Nakano ^{a,*}, Yuko Matsushima-Hibiya ^{a,1}, Masafumi Yamamoto ^{a,2}, Azusa Takahashi-Nakaguchi ^{a,3}, Hirokazu Fukuda ^a, Masaya Ono ^b, Takeji Takamura-Enya ^c, Haruyasu Kinashi ^d, Yukari Totsuka ^a

ARTICLE INFO

Article history: Received 5 July 2012 Received in revised form 15 October 2012 Accepted 22 November 2012 Available online 2 December 2012

Keywords: Actinomycete ADP-ribosylation Modified bases

ABSTRACT

The Streptomyces coelicolor A3(2) genome encodes a possible secretion protein, SCO5461, that shares a 30% homology with the activity domains of two toxic ADP-ribosyltransferases, pierisins and mosquitocidal toxin. We found ADP-ribosylating activity for the SCO5461 protein product through its co-incubation with guanosine and NAD+, which resulted in the formation of N^2 -(ADP-ribos-1-yl)-guanosine (ar2 Guo), with a K_m value of 110 μ M. SCO5461 was further found to ADP-ribosylate deoxyguanosine, GMP, dGMP, GTP, dGTP, and cyclic GMP with k_{cat} values of 150–370 s⁻¹. Oligo(dG), oligo(G), and yeast tRNA were also ADPribosylated by this protein, although with much lower k_{cat} values of 0.2 s⁻¹ or less. SCO5461 showed maximum ADP-ribosylation activity towards guanosine at 30 °C, and maintained 20% of these maximum activity levels even at 0 °C. This is the first report of the ADP-ribosylation of guanosine and guanine mononucleotides among the family members of various ADP-ribosylating enzymes. We additionally observed secretion of the putative gene product, SCO5461, in liquid cultures of S. coelicolor. We thus designated the SCO5461 protein product as S. coelicolor ADP-ribosylating protein, ScARP. Our current results could offer new insights into not only the ADP-ribosylation of small molecules but also signal transduction events via enzymatic nucleoside modification by toxin-related enzymes.

© 2012 Elsevier Ltd. All rights reserved.

^a Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan

^b Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan

^c Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi 243-0292, Japan

^d Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan

Abbreviations: MTX, mosquitocidal toxin from Bacillus sphaericus SSII-1; dGuo, 2'-deoxyguanosine; Guo, guanosine; ar2 Guo, N2 -(ADP-ribos-1-yl)-guanosine; r2 Guo, N2 -(ribos-1-yl)-guanosine; NAD $^+$, $^{\beta}$ -nicotinamide adenine dinucleotide; cGMP, guanosine 3',5'-cyclic monophosphate.

^{*} Corresponding author. Present address: Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan. Tel.: +81-78-992-5988; fax: +81-78-992-3284.

E-mail addresses: tnakano@pp.iij4u.or.jp, Nakano.Tsuyoshi@sysmex.co.jp (T. Nakano).

¹ Present address. Division of Refractory Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.

² Present addresses. Division of Cancer Prevention Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.

³ Present address. Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan.

1. Introduction

ADP-ribosylation is the post-translational modification of proteins and involves the transfer of an ADP-ribose moiety from β-nicotinamide adenine dinucleotide (NAD⁺) to specific residues in target proteins. Mono-ADP-ribosyltransferase activity is well-known to be present in several bacterial toxins that effectively target G proteins, elongation factors, and actins [see (Aktories and Just, 2000) for review]. Emerging studies have also revealed the existence of non-toxic mono-ADP-ribosyltransferases. Nitrogenases in Azospirillum brasilense, Azospirillum lipoferum, and Rhodospirillum rubrum are regulated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductaseactivating glycohydrolase (DraG) during nitrogen fixation (Huergo et al., 2009; Masepohl and Hallenbeck, 2010), and vertebrate ecto ADP-ribosyltransferases (ARTs) target human neutrophil peptide-1 and cell surface P2X7 receptors (Scheuplein et al., 2009; Stevens et al., 2009), Poly(ADPribose) polymerase 10 (PARP-10/ARTD10) also shows mono-ADP-ribosylation activity towards histones (Messner and Hottiger, 2011).

Some of the ADP-ribosyltransferases also target nonprotein molecules. The pierisins, originally identified from Pieris rapae and Pieris brassicae as proteineous toxin against mice and cell lines (Marsh and Rothschild, 1974; Feltwell, 1982; Watanabe et al., 1999), target the N² amino groups of 2'-deoxyguanosine in double stranded DNA, causing mutations and an apoptotic response in cultured cells (Carpusca et al., 2006; Matsumoto et al., 2008; Orth et al., 2011; Yamamoto et al., 2009). The non-toxic CARP-1 from shellfish Meretrix lamarckii also target the same bases of DNA in vitro (Nakano et al., 2006). In contrast, tRNA 2'phosphotransferases initially ADP-ribosylate a 2'-phosphate at the splice junction of pre-tRNA, then remove it by forming ADP-ribose 1"-2" cyclic phosphate, resulting in the formation of a correct tRNA anticodon loop (Kato-Murayama et al., 2005; Sawaya et al., 2005; Steiger et al., 2005). Some small molecules can also be targets for ADP-ribosylation. For example, both Arr and Arr2 from opportunistic pathogens inactivate rifampicin through ADP-ribosylation (Baysarowich et al., 2008). In addition, some ADP-ribosyltransferases show low NAD⁺ glycohydrolase activity that targets water molecules.

We observed from a BLAST search that the SCO5461 protein product, annotated as a secretion protein in the genome of Streptomyces coelicolor A3(2) (Bentley et al., 2002), shares homology with the activity domains of the pierisins and the mosquitocidal toxin from Bacillus sphaericus SSII-1 (MTX), MTX is an NAD+:arginine ADPribosyltransferase that kills mosquito larvae (Schirmer et al., 2002a,b; Thanabalu et al., 1993), whereas pierisins are NAD+:DNA(guanine-N2) ADP-ribosyltransferases that induce apoptosis or gene mutation in mammalian cells in culture and in vivo (Shiga et al., 2006; Takamura-Enya et al., 2001; Totsuka et al., 2003; Watanabe et al., 2004). Streptomyces are gram-positive, soil-bacteria, and are unique organisms in terms of their metabolite profiles, most notably in relation to antibiotics, and in their properties as soil cleaners (Chater et al., 2010; Hodgson, 2000). In our present study, we demonstrated the ADP-ribosylating activity of SCO5461 and found that it has strong activity against the N² amino groups of guanine residues in nucleosides and mononucleotides. This is therefore the first report of an ADP-ribosyltransferase that mainly targets nucleosides, mononucleotides, and their 5'-phosphorylated forms. We also discuss the physiological roles of the ADP-ribosylation of nucleosides and mononucleotides.

2. Materials and methods

2.1. Bacterial strains, culture conditions, and a plasmid

S. coelicolor A3(2) M145 (SCP1⁻SCP2⁻) was grown on Tryptic Soy Broth (Difco, Detroit, MI), with shaking in a Sakaguchi-flask at 28 °C. Escherichia coli K-12 JM109 (Toyobo, Osaka, Japan) was grown on LB for subcloning; E. coli K-12 ER2508 (New England Biolabs, Ipswich, MA) was grown on Terrific Broth for protein expression. A plasmid vector, pMALp2x (New England Biolabs), was used for subcloning and protein expression.

2.2. cDNA subcloning and expression of ScARP

We performed genome DNA extraction, PCR cloning and subcloning of cDNA using standard protocols (Kieser et al., 2000; Sambrook and Russell, 2001). SCO5461 and SCO5461(43–204) genes were ligated into pMALp2x. We introduced point mutations into these genes via overlap-PCR (Nakano et al., 2006). Proteins encoded in pMALp2x vectors were expressed as maltose-binding protein (MBP)-fused products in *E. coli* (Riggs, 1990). Following affinity purification, the MBP tag was cleaved from these recombinant products with factor Xa protease, followed by Mono-S column chromatography. Details of all of these procedures are included with the Supporting information.

2.3. ADP-ribosylation of nucleic acids

The standard reaction conditions employed for nucleosides and mononucleotides were as follows: nucleosides (final 1 mM) were incubated with SCO5461(43–204) protein (final 0.2 nM) and NAD $^+$ (final 0.01–3 mM) in 200 μ l of 50 mM Hepes–NaOH pH 7.0 and 50 mM NaCl, for 10 min at 30 °C. The reaction mixture was immediately injected into an HPLC column. When oligo- or polynucleotides were used as substrates, reacted nucleotides (final 0.1 mg/ml) were injected into HPLC columns after digestion with micrococcal nuclease, phosphodiesterase II, and alkaline phosphatase (Nakano et al., 2006). The products were quantified from the A_{257} values in a standard curve generated using an equimolar mixture of ADP-ribose and Guo. Details of the digestion and HPLC conditions are included with the Supporting information.

2.4. Chemical synthesis of N^2 -(D-ribofuranos-1-yl)-guanosine

The chemical synthesis of N^2 -(D-ribofuranos-1-yl)-guanosine was performed in accordance with the synthesis route determined previously for N^2 -(D-ribofuranos-1-yl)-2'-deoxyguanosine (Takamura-Enya et al., 2001). The

Download English Version:

https://daneshyari.com/en/article/8398032

Download Persian Version:

https://daneshyari.com/article/8398032

<u>Daneshyari.com</u>