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a b s t r a c t

We consider a parametric singular Dirichlet equation, with the singular term u−γ appear-
ing in the left-hand side. We establish the existence and nonexistence of positive solutions
as the parameter λ > 0 and the exponent γ > 0 of the singularity vary. In particular, we
show that for all λ > 0 and all γ > 1, the problem has no positive solution. Our approach
combines truncation arguments with the method of upper and lower solutions.
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1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω . In this paper, we study the following parametric singular
Dirichlet elliptic problem

−∆u +
1
uγ

= λf (x, u) inΩ

u = 0 on ∂Ω
u > 0 inΩ.

(Pλ)

Here γ > 0, λ > 0 and f (x, u) is a Carathéodory function (that is, for all u ∈ R the mapping x −→ f (x, u) is measurable
and for a.a. x ∈ Ω, u −→ f (x, u) is continuous).

The aim of this work is to examine the existence and nonexistence of positive solutions as λ > 0 and γ > 0 vary. By a
solution of problem (Pλ)we understand the following.
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Definition 1. A function u(·) is a solution of problem (Pλ) if u ∈ H1
0 (Ω)∩L∞(Ω), u(x) > 0 for a.a. x ∈ Ω, u−γ

∈ L1(Ω), u >
ĉd for some ĉ > 0 with d(x) = d(x, ∂Ω) and

Ω

(Du,Dh)RN dx +


Ω

h
uγ

dx = λ


Ω

f (x, u)hdx for all h ∈ H1
0 (Ω).

This problemwith a reaction (right-hand side) independent of u, was investigated byDiaz,Morel andOswald [1]. Problem
(Pλ) differs from the usual singular equations encountered in the literature, where the singular term u−γ appears in the
right-hand side. So, the problem under consideration in these cases is the following:

−∆u =
1
uγ

+ λf (x, u) inΩ
u = 0 on ∂Ω
u > 0 inΩ.

In fact, the perturbation term f (x, u) has specific form, namely f (x, u) = f (u) = uq−1 with 2 < q < 2∗. For such problems it
is proved that the equation exhibits bifurcation phenomena. Namely, there exists a critical parameter value λ∗ > 0 such that
for all λ ∈ (0, λ∗) the problem has at least two positive solutions, for λ = λ∗ there is one positive solution and for λ > λ∗

there is no positive solution. We refer to Carl and Perera [2], Ghergu and Rădulescu [3, Chapter 7], Perera and Silva [4,5], and
the references therein. In our problem (Pλ), the singular term appears in the reaction with a negative sign and this changes
the geometry of the problem.

We introduce the following conditions on the reaction f (x, u):
H: f : Ω × R → R is a Carathéodory function such that f (x, 0) = 0 for a.a. x ∈ Ω and

(i) for every ρ > 0, there exists a function aρ ∈ L∞(Ω)+ such that
f (x, u) 6 aρ(x) for a.a. x ∈ Ω, all 0 6 u 6 ρ;

(ii) there exists q ∈ (1, 2) and c1 > 0 such that
f (x, u) > c1uq−1 for a.a. x ∈ Ω, all u > 0;

(iii) lim supu→+∞

f (x,u)
uq−1 6 β < +∞ uniformly for a.a. x ∈ Ω;

(iv) for a.a. x ∈ Ω , all u > 0 and all t > 1, we have
f (x, tu) 6 tf (x, u).

In this setting we show that positive solutions exist only for large values of the positive parameter λ. More precisely, we
prove the following existence theorem.

Theorem A. If hypothesesH hold and γ ∈ (0, 1), then there existsλ∗ > 0 such that for allλ > λ∗ problem (Pλ) admits a solution
uλ ∈ H1

0 (Ω) ∩ L∞(Ω) with uλ−γ
∈ L1(Ω) and uλ > ĉd for some ĉ > 0; moreover for λ ∈ (0, λ∗) there is no positive solution.

Moreover, we investigate also the case γ > 1 and prove the following nonexistence result.

Theorem B. Assume that hypotheses H hold, λ > 0 and γ > 1. Then problem (Pλ) has no solution uλ ∈ H1
0 (Ω) ∩ L∞(Ω).

Our approach uses themethod of upper and lower solutions. For this reasonwe definewhatwemean by upper and lower
solutions for problem (Pλ).

Definition 2. (a) A function ū(·) is an upper solution for problem (Pλ), if ū ∈ H1
0 (Ω), ū(x) > 0 for a.a. x ∈ Ω and

Ω

(Dū,Dh)RN dx +


Ω

h
ūγ

dx > λ


Ω

f (x, ū)hdx for all h ∈ H1
0 (Ω), h > 0.

(b) A function u(·) is a lower solution for problem (Pλ), if u ∈ H1
0 (Ω), u(x) > 0 for a.a. x ∈ Ω and

Ω

(Du,Dh)RN dx +


Ω

h
uγ

dx 6 λ


Ω

f (x, u)hdx for all h ∈ H1
0 (Ω), h > 0.

Remark 1. Since we are looking for positive solutions and the above hypotheses concern the positive semiaxis R+ =

[0,+∞), without any loss of generality we may assume that f (x, u) = 0 for a.a. x ∈ Ω and for all u 6 0. Hypothesis H(iv)
is equivalent to saying that for a.a. x ∈ Ω the function u −→

f (x,u)
u is nonincreasing. So, the reaction f (x, ·) is sublinear.

In addition to the Sobolev space H1
0 (Ω), we will also use the Banach space

C1
0 (Ω̄) = {u ∈ C1(Ω̄) : u|∂Ω = 0}.

This is an ordered Banach space with positive cone
C+ = {u ∈ C1

0 (Ω̄) : u(x) > 0 inΩ}.

This cone has a nonempty interior given by

int C+ =


u ∈ C+ : u(x) > 0 for all x ∈ Ω,

∂u
∂n
(x) < 0 for all x ∈ ∂Ω


,

where n(·) denotes the outward unit normal on ∂Ω .



Download English Version:

https://daneshyari.com/en/article/839808

Download Persian Version:

https://daneshyari.com/article/839808

Daneshyari.com

https://daneshyari.com/en/article/839808
https://daneshyari.com/article/839808
https://daneshyari.com

