Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Combined effects of singular and sublinear nonlinearities in some elliptic problems

Nikolaos S. Papageorgiou^a, Vicențiu D. Rădulescu^{b,c,*}

^a National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece

^b Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

^c Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

ARTICLE INFO

Article history: Received 31 March 2014 Accepted 4 June 2014 Communicated by Enzo Mitidieri

MSC: 35J20 35J60 35J75 58J55

Keywords: Singular equation Upper-lower solutions Truncations

1. Introduction

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with a C^2 -boundary $\partial \Omega$. In this paper, we study the following parametric singular Dirichlet elliptic problem

$$\begin{cases} -\Delta u + \frac{1}{u^{\gamma}} = \lambda f(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ u > 0 & \text{in } \Omega. \end{cases}$$
(P_{\lambda})

Here $\gamma > 0$, $\lambda > 0$ and f(x, u) is a Carathéodory function (that is, for all $u \in \mathbb{R}$ the mapping $x \mapsto f(x, u)$ is measurable and for a.a. $x \in \Omega$, $u \mapsto f(x, u)$ is continuous).

The aim of this work is to examine the existence and nonexistence of positive solutions as $\lambda > 0$ and $\gamma > 0$ vary. By a solution of problem (P_{λ}) we understand the following.

http://dx.doi.org/10.1016/j.na.2014.06.016 0362-546X/© 2014 Elsevier Ltd. All rights reserved.

Noonlinger

We consider a parametric singular Dirichlet equation, with the singular term $u^{-\gamma}$ appearing in the left-hand side. We establish the existence and nonexistence of positive solutions as the parameter $\lambda > 0$ and the exponent $\gamma > 0$ of the singularity vary. In particular, we show that for all $\lambda > 0$ and all $\gamma \ge 1$, the problem has no positive solution.

© 2014 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania. Tel.: +40 251412615; fax: +40 251411688.

E-mail addresses: npapg@math.ntua.gr (N.S. Papageorgiou), vicentiu.radulescu@imar.ro, vicentiu.radulescu@math.cnrs.fr (V.D. Rădulescu).

Definition 1. A function $u(\cdot)$ is a solution of problem (P_{λ}) if $u \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$, u(x) > 0 for a.a. $x \in \Omega$, $u^{-\gamma} \in L^1(\Omega)$, $u \ge 0$ $\hat{c}d$ for some $\hat{c} > 0$ with $d(x) = d(x, \partial \Omega)$ and

$$\int_{\Omega} (Du, Dh)_{\mathbb{R}^N} dx + \int_{\Omega} \frac{h}{u^{\gamma}} dx = \lambda \int_{\Omega} f(x, u) h dx \quad \text{for all } h \in H^1_0(\Omega).$$

This problem with a reaction (right-hand side) independent of u, was investigated by Diaz, Morel and Oswald [1]. Problem (P₃) differs from the usual singular equations encountered in the literature, where the singular term $u^{-\gamma}$ appears in the right-hand side. So, the problem under consideration in these cases is the following:

$$\begin{vmatrix} -\Delta u = \frac{1}{u^{\gamma}} + \lambda f(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ u > 0 & \text{in } \Omega. \end{cases}$$

In fact, the perturbation term f(x, u) has specific form, namely $f(x, u) = f(u) = u^{q-1}$ with $2 < q < 2^*$. For such problems it is proved that the equation exhibits bifurcation phenomena. Namely, there exists a critical parameter value $\lambda^* > 0$ such that for all $\lambda \in (0, \lambda^*)$ the problem has at least two positive solutions, for $\lambda = \lambda^*$ there is one positive solution and for $\lambda > \lambda^*$ there is no positive solution. We refer to Carl and Perera [2]. Ghergu and Rădulescu [3, Chapter 7]. Perera and Silva [4,5], and the references therein. In our problem (P_1) , the singular term appears in the reaction with a negative sign and this changes the geometry of the problem.

We introduce the following conditions on the reaction f(x, u):

- H: $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that f(x, 0) = 0 for a.a. $x \in \Omega$ and
 - (i) for every $\rho > 0$, there exists a function $a_{\rho} \in L^{\infty}(\Omega)_+$ such that $f(x, u) \leq a_{\rho}(x)$ for a.a. $x \in \Omega$, all $0 \leq u \leq \rho$;
 - (ii) there exists $q \in (1, 2)$ and $c_1 > 0$ such that $f(x, u) \ge c_1 u^{q-1}$ for a.a. $x \in \Omega$, all $u \ge 0$; (iii) $\limsup_{u \to +\infty} \frac{f(x, u)}{u^{q-1}} \le \beta < +\infty$ uniformly for a.a. $x \in \Omega$; (iv) for a.a. $x \in \Omega$, all $u \ge 0$ and all $t \ge 1$, we have
 - - $f(x, tu) \leq tf(x, u).$

In this setting we show that positive solutions exist only for large values of the positive parameter λ . More precisely, we prove the following existence theorem.

Theorem A. If hypotheses H hold and $\gamma \in (0, 1)$, then there exists $\lambda_* > 0$ such that for all $\lambda > \lambda_*$ problem (P_{λ}) admits a solution $u_{\lambda} \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ with $u_{\lambda}^{-\gamma} \in L^1(\Omega)$ and $u_{\lambda} \ge \hat{c}d$ for some $\hat{c} > 0$; moreover for $\lambda \in (0, \lambda_*)$ there is no positive solution.

Moreover, we investigate also the case $\gamma \ge 1$ and prove the following nonexistence result.

Theorem B. Assume that hypotheses H hold, $\lambda > 0$ and $\gamma \ge 1$. Then problem (P_{λ}) has no solution $u_{\lambda} \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$.

Our approach uses the method of upper and lower solutions. For this reason we define what we mean by upper and lower solutions for problem (P_{λ}) .

Definition 2. (a) A function $\bar{u}(\cdot)$ is an upper solution for problem (P_{λ}) , if $\bar{u} \in H_0^1(\Omega)$, $\bar{u}(x) > 0$ for a.a. $x \in \Omega$ and

$$\int_{\Omega} (D\bar{u}, Dh)_{\mathbb{R}^N} dx + \int_{\Omega} \frac{h}{\bar{u}^{\gamma}} dx \ge \lambda \int_{\Omega} f(x, \bar{u}) h dx \quad \text{for all } h \in H^1_0(\Omega), \ h \ge 0.$$

(b) A function $u(\cdot)$ is a lower solution for problem (P_{λ}) , if $u \in H_0^1(\Omega)$, u(x) > 0 for a.a. $x \in \Omega$ and

$$\int_{\Omega} (D\underline{u}, Dh)_{\mathbb{R}^{N}} dx + \int_{\Omega} \frac{h}{\underline{u}^{\gamma}} dx \leq \lambda \int_{\Omega} f(x, \underline{u}) h dx \quad \text{for all } h \in H_{0}^{1}(\Omega), \ h \geq 0$$

Remark 1. Since we are looking for positive solutions and the above hypotheses concern the positive semiaxis \mathbb{R}_+ $[0, +\infty)$, without any loss of generality we may assume that f(x, u) = 0 for a.a. $x \in \Omega$ and for all $u \leq 0$. Hypothesis H(iv) is equivalent to saying that for a.a. $x \in \Omega$ the function $u \mapsto \frac{f(x, u)}{u}$ is nonincreasing. So, the reaction $f(x, \cdot)$ is sublinear.

In addition to the Sobolev space $H_0^1(\Omega)$, we will also use the Banach space

$$C_0^1(\bar{\Omega}) = \{ u \in C^1(\bar{\Omega}) : u|_{\partial\Omega} = 0 \}$$

This is an ordered Banach space with positive cone

$$C_{+} = \{ u \in C_{0}^{1}(\overline{\Omega}) : u(x) \ge 0 \text{ in } \Omega \}.$$

This cone has a nonempty interior given by

int
$$C_+ = \left\{ u \in C_+ : u(x) > 0 \text{ for all } x \in \Omega, \ \frac{\partial u}{\partial n}(x) < 0 \text{ for all } x \in \partial \Omega \right\},\$$

where $n(\cdot)$ denotes the outward unit normal on $\partial \Omega$.

Download English Version:

https://daneshyari.com/en/article/839808

Download Persian Version:

https://daneshyari.com/article/839808

Daneshyari.com