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a b s t r a c t

We present a variational model for the quasi-static crack growth in hydraulic fracture in
the framework of the energy formulation of rate-independent processes. The cracks are
assumed to lie on a prescribed plane and to satisfy a very weak regularity assumption.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Hydraulic fracture studies the process of crack growth in rocks driven by the injection of high pressure fluids. The main
use of hydraulic fracturing is the extraction of natural gas or oil. In these cases, a fluid at high pressure is pumped into a
pre-existing fracture through a wellbore, causing the enlargement of the crack.

In the study of hydraulic fracture, all thermal and chemical effects are usually neglected and the fracturing stimulation
is performed only by hydraulic forces, not by explosives, thus the inertial effects are negligible. This justifies the use of
quasi-static models.

Numerical simulations for this kind of problems have been presented in various papers, coupling the fluid equation,
typically Reynolds’ equation, and the elasticity system for the rock, see for instance [1–3]. Particular attention has been
given to the tip behavior of a fluid driven crack, see [4,5]. Some models, see, e.g., [6–8], are based on a variational approach
introduced by Francfort and Marigo [9] for the quasi-static growth of brittle fractures.

While the results of [6–8] are based on a phase field approximation of the crack introduced by Ambrosio and Tortorelli
[10], the model presented in this paper is instead built on the sharp-interface version originally developed in [9].

We assume that the rock fills the whole space R3 and has an initial crack, lying on a plane Σ passing through the origin.
The rock is modeled as a linearly elastic, impermeable material and we allow the crack to grow only within Σ . The fluid is
pumped through the origin into the region between the crack lips. It is assumed to be an incompressible fluid.
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Since our model is quasi-static, at each time t the fluid and the rock are in equilibrium. This implies that the pressure
is uniform in the region occupied by the fluid and exerts a force on the rock through the crack lips. We prove also that the
fluid occupies the whole region between the crack lips (see Remarks 3.1 and 4.2). In particular, there is no dry region near
the crack edge.

We assume that at every timewe know the total volume V (t) of the fluid that has been pumped into the crack up to time
t . The mathematical problem is to show that given the function t → V (t), we can determine at each time the shape and
size of the crack, as well as the fluid pressure p(t).

In Section 3 we discuss a simplified version of our model, where we suppose that the rock is homogeneous and isotropic.
This justifies the assumption that the time dependent cracks are circular (penny-shaped cracks, see, e.g., [11–13]). The main
result of this section is the existence of a unique irreversible quasi-static evolution (see Theorem 3.9) satisfying a global
stability condition at each time aswell as an energy-dissipation balance, which involves the stored elastic energy, the energy
dissipated by the crack, and the power of the pressure forces exerted by the fluid. Moreover, in this simplified setting the
solution can be explicitly given as a function of the volume V (·). The uniqueness follows from a careful analysis of the
regularity properties satisfied by the solution.

Finally, in Section 4 we discuss a more general model. In this case, the rock is not necessarily homogeneous or isotropic,
so we allow the elasticity tensor C to be a function of the space variable x ∈ R3. Because of the lack of homogeneity and
isotropy, we do not expect any symmetry for the crack, so we need to define a new class of admissible cracks, which extends
the previous one (see Definition 4.1), keeping some regularity properties of the boundary. Also in this case we prove the
existence of an irreversible quasi-static evolution (see Theorem 4.4) based on a global stability condition and an energy-
dissipation balance. The proof relies on a time discretization procedure introduced in [9] and frequently used in the study
of rate-independent processes, see [14].

2. Notation and preliminaries

Let us first give some notation and recall some well known results.
Throughout the paper H2 denotes the 2-dimensional Hausdorff measure in R3 and K denotes the set of all compact sets

of R3.
Given K1, K2 ∈ K , the Hausdorff distance dH(K1, K2) between K1 and K2 is defined by

dH(K1, K2) := max

max
x∈K1

d(x, K2), max
x∈K2

d(x, K1)


.

We say that Kh → K in the Hausdorff metric if dH(Kh, K) → 0. The following compactness theorem is well known, see,
e.g., [15, Blaschke’s Selection Theorem].

Theorem 2.1. Let Kh be a sequence in K . Assume that there exists H ∈ K such that Kh ⊆ H for every h ∈ N. Then there exist a
subsequence Khj and K ∈ K such that Khj → K in the Hausdorff metric.

We say that a set function K : [0, T ] → K is increasing if K(s) ⊆ K(t) for every 0 ≤ s ≤ t ≤ T . The following two
results about increasing set functions can be found for instance in [16].

Theorem 2.2. Let H ∈ K and let K : [0, T ] → K be an increasing set function such that K(t) ⊆ H for every t ∈ [0, T ]. Let
K−

: (0, T ] → K and K+
: [0, T ) → K be the functions defined by

K−(t) :=


s<t

K(s) for 0 < t ≤ T ,

K+(t) :=


s>t

K(s) for 0 ≤ t < T .

Then

K−(t) ⊆ K(t) ⊆ K+(t) for 0 < t < T .

Let Θ be the set of points t ∈ (0, T ) such that K+(t) = K−(t). Then [0, T ] \ Θ is at most countable and K(th) → K(t) in the
Hausdorff metric for every t ∈ Θ and every sequence th in [0, T ] converging to t.

Theorem 2.3. Let Kh be a sequence of increasing set functions from [0, T ] in K . Assume that there exists H ∈ K such that
Kh(t) ⊆ H for every t ∈ [0, T ] and every h ∈ N. Then there exist a subsequence, still denoted by Kh, and an increasing set
function K : [0, T ] → K such that Kh(t) → K(t) in the Hausdorff metric for every t ∈ [0, T ].

For every open set Ω ⊆ R3 we define, as in [17], the space

W1
2,6(Ω; R3) := {u ∈ L6(Ω; R3) : ∇u ∈ L2(Ω; M3)}

equipped with the norm

∥u∥W1
2,6(Ω;R3) := ∥u∥L6(Ω;R3) + ∥∇u∥L2(Ω;M3)

, (2.1)
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